首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2307篇
  免费   214篇
  国内免费   159篇
  2680篇
  2024年   3篇
  2023年   23篇
  2022年   78篇
  2021年   114篇
  2020年   83篇
  2019年   95篇
  2018年   110篇
  2017年   79篇
  2016年   125篇
  2015年   163篇
  2014年   151篇
  2013年   180篇
  2012年   208篇
  2011年   179篇
  2010年   108篇
  2009年   78篇
  2008年   117篇
  2007年   108篇
  2006年   82篇
  2005年   82篇
  2004年   61篇
  2003年   60篇
  2002年   48篇
  2001年   44篇
  2000年   38篇
  1999年   36篇
  1998年   26篇
  1997年   25篇
  1996年   29篇
  1995年   22篇
  1994年   16篇
  1993年   12篇
  1992年   13篇
  1991年   10篇
  1990年   13篇
  1989年   5篇
  1988年   7篇
  1987年   13篇
  1986年   6篇
  1985年   7篇
  1984年   4篇
  1983年   3篇
  1978年   1篇
  1977年   2篇
  1975年   3篇
  1974年   2篇
  1971年   2篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
排序方式: 共有2680条查询结果,搜索用时 0 毫秒
31.
Chicken interferon α (ChIFN-α) and ChIFN-β are type I IFNs that are important antiviral cytokines in the innate immune system. In the present study, we identified the virus-induced expression of ChIFN-α and ChIFN-β in chicken fibroblast DF-1 cells and systematically evaluated the antiviral activities of recombinant ChIFN-α and ChIFN-β by cytopathic-effect (CPE) inhibition assays. We found that ChIFN-α exhibited stronger antiviral activity than ChIFN-β in terms of inhibiting the replication of vesicular stomatitis virus, Newcastle disease virus and avian influenza virus, respectively. To elucidate the mechanism of differential antiviral activities between the two ChIFNs, we measured the relative mRNA levels of IFN-stimulated genes (ISGs) in IFN-treated DF-1 cells by real-time PCR. ChIFN-α displayed greater induction potency than ChIFN-β on several ISGs encoding antiviral proteins and MHC-I, whereas ChIFN-α was less potent than ChIFN-β for inducing ISGs involved in signaling pathways. In conclusion, ChIFN-α and ChIFN-β presented differential induction potency on various sets of ISGs, and the stronger antiviral activity of ChIFN-α is likely attributed to the greater expression levels of downstream antiviral ISGs.  相似文献   
32.
Erythropoietin (EPO) has multiple biological functions, including the modulation of glucose metabolism. However, the mechanisms underlying the action of EPO are still obscure. This study is aimed at investigating the potential mechanisms by which EPO improves glucose tolerance in an animal model of type 2 diabetes. Male C57BL/6 mice were fed with high-fat diet (HFD) for 12 weeks and then treated with EPO (HFD-EPO) or vehicle saline (HFD-Con) for two week. The levels of fasting blood glucose, serum insulin and glucose tolerance were measured and the relative levels of insulin-related phosphatidylinositol 3-kinase (PI3K)/Akt, insulin receptor (IR) and IR substrate 1 (IRS1) phosphorylation were determined. The levels of phosphoenolpyruvate carboxykinase (PEPCK), glucose-6- phosphatase (G6Pase), toll like receptor 4 (TLR4), tumor necrosis factor (TNF)-α and IL-6 expression and nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK), extracellular-signal-regulated kinase (ERK) and p38 MAPK activation in the liver were examined. EPO treatment significantly reduced the body weights and the levels of fasting blood glucose and serum insulin and improved the HFD-induced glucose intolerance in mice. EPO treatment significantly enhanced the levels of Akt, but not IR and IRS1, phosphorylation, accompanied by inhibiting the PEPCK and G6Pase expression in the liver. Furthermore, EPO treatment mitigated the HFD-induced inflammatory TNF-α and IL-6 production, TLR4 expression, NF-κB and JNK, but not ERK and p38 MAPK, phosphorylation in the liver. Therefore, our data indicated that EPO treatment improved glucose intolerance by inhibiting gluconeogenesis and inflammation in the livers of HFD-fed mice.  相似文献   
33.
Piwi-interacting RNAs (piRNAs) play a key role in spermatogenesis. Here, we describe the piRNAs profiling of primordial germ cells (PGCs), spermatogonial stem cells (SSCs), and the spermatogonium (Sp) during early-stage spermatogenesis in chicken. We obtained 31,361,989 reads from PGCs, 31,757,666 reads from SSCs, and 46,448,327 reads from Sp cells. The length distribution of piRNAs in the three samples showed peaks at 33 nt. The resulting genes were subsequently annotated against the Gene Ontology (GO) database. Five genes (RPL7A, HSPA8, Pum1, CPXM2, and PRKCA) were found to be involved in cellular processes. Interactive pathway analysis (IPA) further revealed three important pathways in early-stage spermatogenesis including the FGF, Wnt, and EGF receptor signaling pathways. The gene Pum1 was found to promote germline stem cell proliferation, but it also plays a role in spermatogenesis. In conclusion, we revealed characteristics of piRNAs during early spermatogonial development in chicken and provided the basis for future research.  相似文献   
34.
A facile capillary electrophoresis (CE) method for the separation of cinnamic acid and its derivatives (3,4-dimethoxycinnamic acid, 4-methoxycinnamic acid, isoferulic acid, sinapic acid, cinnamic acid, ferulic acid, and trans-4-hydroxycinnamic acid) using graphene quantum dots (GQDs) as additives with direct ultraviolet (UV) detection is reported. GQDs were synthesized by chemical oxidization and further purified by a macroporous resin column to remove salts (Na2SO4 and NaNO3) and other impurities. Transmission electron microscopy (TEM) indicated that GQDs have a relatively uniform particle size (2.3 nm). Taking into account the structural features of GQDs, cinnamic acid and its derivatives were adopted as model compounds to investigate whether GQDs can be used to improve CE separations. The separation performance of GQDs used as additives in CE was studied through variations of pH, concentration of the background electrolyte (BGE), and contents of GQDs. The results indicated that excellent separation can be achieved in less than 18 min, which is mainly attributed to the interaction between the analytes and GQDs, especially isoferulic acid, sinapic acid, and cinnamic acid.  相似文献   
35.
A wide range of microorganisms found in the rhizhosphere are able to regulate plant growth and development, but little is known about the mechanism by which epiphytic microbes inhibit plant growth. Here, an epiphytic bacteria Stenotrophomonas maltophilia, named as LZMBW216, were isolated and identified from the potato (Solanum tuberosum L. cv. Da Xi Yang) leaf surface. They could decrease primary root elongation and lateral root numbers in Arabidopsis seedlings. The inhibitory effects of LZMBW216 on plant growth were not due to a reduced indole-3-acetic acid (IAA) content, as exogenously applied IAA did not recover the inhibition. Furthermore, LZMBW216 did not affect the expression of DR5::GUS and CycB1;1::GUS. However, we found that LZMBW216 exhibited little effect on the primary root elongation in the pin2 mutant and on the lateral root numbers in the aux1-7 mutant. Moreover, LZMBW216 decreased expressions of AUX1 and PIN2 proteins. Together, these results suggest that root system architecture alterations caused by LZMBW216 may involve polar auxin transport.  相似文献   
36.
37.
A novel Clade 2.3.2.1c H5N1 reassortant virus caused several outbreaks in wild birds in some regions of China from late 2014 to 2015. Based on the genetic and phylogenetic analyses, the viruses possess a stable gene constellation with a Clade 2.3.2.1c HA, a H9N2-derived PB2 gene and the other six genes of Asian H5N1-origin. The Clade 2.3.2.1c H5N1 reassortants displayed a high genetic relationship to a human H5N1 strain (A/Alberta/01/2014). Further analysis showed that similar viruses have been circulating in wild birds in China, Russia, Dubai (Western Asia), Bulgaria and Romania (Europe), as well as domestic poultry in some regions of Africa. The affected areas include the Central Asian, East Asian-Australasian, West Asian-East African, and Black Sea/Mediterranean flyways. These results show that the novel Clade 2.3.2.1c reassortant viruses are circulating worldwide and may have gained a selective advantage in migratory birds, thus posing a serious threat to wild birds and potentially humans.
  相似文献   
38.
39.
Lithium metal is the most attractive anode material due to its extremely high specific capacity, minimum potential, and low density. However, uncontrollable growth of lithium dendrite results in severe safety and cycling stability concerns, which hinders the application in next generation secondary batteries. In this paper, a new and facile method imposing a magnetic field to lithium metal anodes is proposed. That is, the lithium ions suffering Lorentz force due to the electromagnetic fields are put into spiral motion causing magnetohydrodynamics (MHD) effect. This MHD effect can effectively promote mass transfer and uniform distribution of lithium ions to suppress the dendrite growth as well as obtain uniform and compact lithium deposition. The results show that the lithium metal electrodes within the magnetic field exhibit excellent cycling and rate performance in a symmetrical battery. Additionally, full batteries using limited lithium metal as anodes and commercial LiFePO4 as cathodes show improved performance within the magnetic field. In summary, a new and facile strategy of suppressing lithium dendrites using the MHD effect by imposing a magnetic field is proposed, which may be generalized to other advanced alkali metal batteries.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号