首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   16篇
  国内免费   1篇
  2023年   2篇
  2022年   1篇
  2021年   6篇
  2020年   4篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   6篇
  2014年   8篇
  2013年   13篇
  2012年   20篇
  2011年   12篇
  2010年   12篇
  2009年   9篇
  2008年   12篇
  2007年   12篇
  2006年   9篇
  2005年   4篇
  2004年   7篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有183条查询结果,搜索用时 375 毫秒
71.
72.
In this study, we addressed the presence and location of nucleotide-binding sites in the voltage-dependent anion channel (VDAC). VDAC bound to reactive red 120-agarose, from which it was eluted by ATP, less effectively by ADP and AMP, but not by NADH. The photoreactive ATP analog, benzoyl-benzoyl-ATP (BzATP), was used to identify and characterize the ATP-binding sites in VDAC. [alpha-(32)P]BzATP bound to purified VDAC at two or more binding sites with apparent high and low binding affinities. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis of BzATP-labeled VDAC confirmed the binding of at least two BzATP molecules to VDAC. The VDAC BzATP-binding sites showed higher specificity for purine than for pyrimidine nucleotides and higher affinity for negatively charged nucleotide species. VDAC treatment with the lysyl residue modifying reagent, fluorescein 5'-isothiocyanate, markedly inhibited VDAC labeling with BzATP. The VDAC nucleotide-binding sites were localized using chemical and enzymatic cleavage. Digestion of [alpha-(32)P]BzATP-labeled VDAC with CNBr or V8 protease resulted in the appearance of approximately 17- and approximately 14-kDa labeled fragments. Further digestion, high performance liquid chromatography separation, and sequencing of the selected V8 peptides suggested that the labeled fragments originated from two different regions of the VDAC molecule. MALDI-TOF analysis of BzATP-labeled, tryptic VDAC fragments indicated and localized three nucleotide binding sites, two of which were at the N and C termini of VDAC. Thus, the presence of two or more nucleotide-binding sites in VDAC is suggested, and their possible function in the control of VDAC activity, and, thereby, of outer mitochondrial membrane permeability is discussed.  相似文献   
73.
During aging and degeneration, many changes occur in the structure and composition of human cartilaginous tissues, which include the accumulation of the AGE (advanced glycation end-product), pentosidine, in long-lived proteins. In the present study, we investigated the accumulation of pentosidine in constituents of the human IVD (intervertebral disc), i.e. collagen, aggrecan-derived PG (proteoglycan) (A1) and its fractions (A1D1-A1D6) in health and pathology. We found that, after maturity, pentosidine accumulates with age. Over the age range studied, a linear 6-fold increase was observed in pentosidine accumulation for A1 and collagen with respective rates of 0.12 and 0.66 nmol x (g of protein)(-1) x year(-1). Using previously reported protein turnover rate constants (k(T)) obtained from measurements of the D-isomer of aspartic residue in collagen and aggrecan of human IVD, we could calculate the pentosidine formation rate constants (k(F)) for these constituents [Sivan, Tsitron, Wachtel, Roughley, Sakkee, van der Ham, DeGroot, Roberts and Maroudas (2006) J. Biol. Chem. 281, 13009-13014; Tsitron (2006) MSc Thesis, Technion-Israel Institute of Technology, Haifa, Israel]. In spite of the comparable formation rate constants obtained for A1D1 and collagen [1.81+/-0.25 compared with 3.71+/-0.26 micromol of pentosidine x (mol of lysine)(-1) x year(-1) respectively], the higher pentosidine accumulation in collagen is consistent with its slower turnover (0.005 year(-1) compared with 0.134 year(-1) for A1D1). Pentosidine accumulation increased with decreasing buoyant density and decreasing turnover of the proteins from the most glycosaminoglycan-rich PG components (A1D1) to the least (A1D6), with respective k(F) values of 1.81+/-0.25 and 3.18+/-0.37 micromol of pentosidine.(mol of lysine)(-1) x year(-1). We concluded that protein turnover is an important determinant of pentosidine accumulation in aggrecan and collagen of human IVD, as was found for articular cartilage. Correlation of pentosidine accumulation with protein half-life in both normal and degenerate discs further supports this finding.  相似文献   
74.
Embar K  Forgacs C  Sivan A 《Biodegradation》2006,17(4):369-377
The biodegradation capacity of indigenous microbial populations was examined in a desert soil contaminated with crude oil. To evaluate biodegradation, soil samples supplemented with 5, 10 or 20% (w/w) of crude oil were incubated for 90 days at 30 °C. The effect of augmentation of the soil with vermiculite (50% v/v) as a bulking agent providing increased surface/volume ratio and improved soil aeration was also tested. Maximal biodegradation (91%) was obtained in soil containing the highest concentration of crude oil (20%) and supplemented with vermiculite; only 74% of the oil was degraded in samples containing the same level of crude oil but lacking vermiculite. Gas chromatograms of distilled fractions of crude oil extracted from the soil before and after incubation demonstrated that most of the light and part of the intermediate weight fractions initially present in the oil extracts could not be detected after incubation. Monitoring of microbial population densities revealed an initial decline in bacterial viable counts after exposure to oil, presumably as a result of the crude oil’s toxicity. This decline was followed by a steep recovery in microbial population density, then by a moderate increase that persisted until the end of incubation. By contrast, the inhibitory effect of crude oil on the fungal population was minimal. Furthermore, the overall increased growth response of the fungal population, at all three levels of contamination, was about one order of magnitude higher than that of the bacterial population.  相似文献   
75.
76.
Pelizaeus-Merzbacher disease is an X-linked hypomyelinating leukodystrophy caused by PLP1 mutations. A similar autosomal-recessive phenotype, Pelizaeus-Merzbacher-like disease (PMLD), has been shown to be caused by homozygous mutations in GJC2 or HSPD1. We report a consanguineous Israeli Bedouin kindred with clinical and radiological findings compatible with PMLD in which linkage to PLP1, GJC2, and HSPD1 was excluded. Through genome-wide homozygosity mapping and mutation analysis, we demonstrated in all affected individuals a homozygous frameshift mutation that fully abrogates the main active domain of AIMP1, encoding ARS-interacting multifunctional protein 1. The mutation fully segregates with the disease-associated phenotype and was not found in 250 Bedouin controls. Our findings are in line with the previously demonstrated inability of mutant mice lacking the AIMP1/p43 ortholog to maintain axon integrity in the central and peripheral neural system.  相似文献   
77.
The essential micronutrient selenium is found in proteins as selenocysteine (Sec), the only genetically encoded amino acid whose biosynthesis occurs on its cognate tRNA in humans. In the final step of selenocysteine formation, the essential enzyme SepSecS catalyzes the conversion of Sep-tRNA to Sec-tRNA. We demonstrate that SepSecS mutations cause autosomal-recessive progressive cerebellocerebral atrophy (PCCA) in Jews of Iraqi and Moroccan ancestry. Both founder mutations, common in these two populations, disrupt the sole route to the biosynthesis of the 21st amino acid, Sec, and thus to the generation of selenoproteins in humans.  相似文献   
78.
79.
80.
Translation elongation in eukaryotes is mediated by the concerted actions of elongation factor 1A (eEF1A), which delivers aminoacylated tRNA to the ribosome; elongation factor 1B (eEF1B) complex, which catalyzes the exchange of GDP to GTP on eEF1A; and eEF2, which facilitates ribosomal translocation. Here we present evidence in support of a novel mode of translation regulation by hindered tRNA delivery during mitosis. A conserved consensus phosphorylation site for the mitotic cyclin-dependent kinase 1 on the catalytic delta subunit of eEF1B (termed eEF1D) is required for its posttranslational modification during mitosis, resulting in lower affinity to its substrate eEF1A. This modification is correlated with reduced availability of eEF1A·tRNA complexes, as well as reduced delivery of tRNA to and association of eEF1A with elongating ribosomes. This mode of regulation by hindered tRNA delivery, although first discovered in mitosis, may represent a more globally applicable mechanism employed under other physiological conditions that involve down-regulation of protein synthesis at the elongation level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号