首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   19篇
  2023年   4篇
  2022年   6篇
  2021年   10篇
  2020年   7篇
  2019年   8篇
  2018年   16篇
  2017年   8篇
  2016年   14篇
  2015年   14篇
  2014年   20篇
  2013年   34篇
  2012年   27篇
  2011年   19篇
  2010年   18篇
  2009年   16篇
  2008年   11篇
  2007年   17篇
  2006年   14篇
  2005年   20篇
  2004年   8篇
  2003年   7篇
  2002年   4篇
  2001年   7篇
  2000年   8篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
排序方式: 共有340条查询结果,搜索用时 15 毫秒
61.
Europium (Eu)3+‐substituted La2Li0.5Al0.5O4 red emitting phosphors were prepared by a conventional high‐temperature solid‐state reaction method. Powder X‐ray diffraction, diffuse reflectance spectra and spectrofluorometry were used as vital characterizing tools for the phosphors. The Eu concentration dependence luminescence properties and Judd–Ofelt intensity parameters were investigated and calculated, respectively. All compositions showed an orange red emission (due to the magnetic and electric dipole transitions of the Eu3+ ion) with the appropriate Commission Internationale de l'Eclairage (CIE) colour gamut under near ultraviolet or blue ray light excitation. The calculated critical distance showed that the energy transfer occured between Eu to Eu via an exchange mechanism. The Eu1.4La0.6Li0.5Al0.5O4 composition showed the highest red emission intensity with CIE colour saturation compared with that of the commercial Eu‐activated yttrium oxysulfide red phosphor.  相似文献   
62.
63.
In conditions of overnutrition, cardiac cells must cope with a multitude of extracellular signals generated by changes in nutrient load (glucose, amino acids, and lipids) and the hormonal milieu [increased insulin (INS), ANG II, and adverse cytokine/adipokine profile]. Herein, we review the diverse compensatory/adaptive mechanisms that counter the deleterious effects of excess nutrients and growth factors. We largely focus the discussion on evidence obtained from Zucker obese (ZO) and Zucker diabetic fatty (ZDF) rats, which are useful models to evaluate adaptive and maladaptive metabolic, structural, and functional cardiac remodeling. One adaptive mechanism present in the INS-resistant ZO, but absent in the diabetic ZDF heart, involves an interaction between the nutrient sensor kinase mammalian target of rapamycin complex 1 (mTORC1) and ANG II-type 2 receptor (AT2R). Recent evidence supports a cardioprotective role for the AT2R; for example, suppression of AT2R activation interferes with antihypertrophic/antifibrotic effects of AT1R blockade, and AT2R agonism improves cardiac structure and function. We propose a scenario, whereby mTORC1-signaling-mediated increase in AT2R expression in the INS-resistant ZO heart is a cardioprotective adaptation to overnutrition. In contrast to the ZO rat, heart tissues of ZDF rats do not show activation of mTORC1. We posit that such a lack of activation of the mTOR?AT2R integrative pathway in cardiac tissue under conditions of obesity-induced diabetes may be a metabolic switch associated with INS deficiency and clinical diabetes.  相似文献   
64.
Growth of Spirulina sp. (MCRC-A0003), a cyanobacterium, was evaluated under different concentrations of carbon-dioxide (CO2) (4–50 %) in a closed glass photobioreactor. Although significant CO2 utilization by the cyanobacterial strain was observed up to 50 % concentration, complete utilization was observed only at 4, 10 and 20 % concentrations on 3rd, 6th and 8th day respectively. However, considerable reduction was witnessed in reactors containing 30–50 % CO2 only between 6th and 9th day. A corresponding increase in the biomass and primary metabolites like chlorophyll-a, carbohydrate and protein were observed. Biomass productivity of Spirulina in reactors sparged with 4, 10 and 20 % CO2 were 13.7, 43 and 44 % more than that in control reactor without CO2. While CO2 increased the levels of primary metabolites in the cyanobacterial cells, it was quite prominent in 10 % CO2 concentration with the chlorophyll-a, carbohydrate and protein contents were 64, 183 and 626 mg g?1 respectively. While 10 and 6.6 % increase were noticed in chlorophyll-a and protein, 17 % increase in carbohydrate levels was observed in Spirulina cells, which could be attributed to the conversion of CO2 to carbohydrate by the cyanobacterium.  相似文献   
65.
Quinolone synthase from Aegle marmelos (AmQNS) is a Rutacean-specific plant type III polyketide synthase that synthesizes quinolone, acridone, and benzalacetone with therapeutic potential. Simple architecture and broad substrate affinity of AmQNS make it as one of the target enzymes to produce novel structural scaffolds. Another unique feature of AmQNS despite its high similarity to acridone forming type III polyketide synthase from Citrus microcarpa is the variation in the product formation. Hence, to explore the characteristic features of AmQNS, an in-depth sequence and structure-based bioinformatics analyses were performed. Our studies indicated that AmQNS and its nearest homologs have evolved by a series of gene duplication events and strong purifying selection pressure constrains them in the evolutionary process. Additionally, some amino acid alterations were identified in the functionally important region(s), which can contribute to the functional divergence of the enzyme. Prediction of favorable amino acid substitutions will be advantageous in the metabolic engineering of AmQNS for the production of novel compounds. Furthermore, comparative modeling and docking studies were utilized to investigate the structural behavior and small molecule interaction pattern of AmQNS. The observations and results reported here are crucial for advancing our understanding of AmQNS’s phylogenetic position, selection pressure, evolvability, interaction pattern and thus providing the foundation for further studies on the structural and reaction mechanism.  相似文献   
66.
The LaF3 nanocrystals through a facile hydrothermal route with hexagonal structures have been synthesized via doping of trivalent rare earth (RE3+) ions – RE = Tb, Sm, Dy and Tm – with rod‐like and perforated morphologies using NH4F as fluorine precursor. Hexagonal phase formation was confirmed by powder X‐ray diffraction. The crystalline sizes were calculated by the Scherrer equation where found to have an average crystalline size of 12 to 35 nm. The morphological studies of the nanocrystals were carried out by means of transmission electron microscopy (TEM). The LaF3:Tm3+,Sm3+ ions show the characteristic emission of Tb3+ and Tm3+ respectively. In Sm3+‐doped LaF3, three prominent emission peaks at 561, 597 and 641 nm were found, which belong to 4G5/2 → 6H5/2, 4G5/2 → 6H7/2 (magnetic dipole) and 4G5/2 → 6H9/2 (electric dipole) transitions, respectively. The Dy3+ activated LaF3 shows blue and yellow emission and the corresponding CIE color coordinate show white light emission (CCT value 10650 K).  相似文献   
67.
68.
Diabetes is one of the nation's most prevalent, debilitating and costly diseases. For diabetes, frequent insulin treatment is very expensive and may increase anti-insulin antibody production, which may cause unwanted side effects. Corosolic acid may also have some efficacy in the treatment of diabetes, but without induction of anti-insulin antibodies. Recently, corosolic acid from Lagerstroemia speciosa L. leaf extracts has been reported to act via an indirect mechanism (unlike insulin) in animal experiments. The insulin-complementary anti-diabetic therapeutic value observed in these Japanese preliminary clinical trials has led to renewed interest in the biosynthesis of this compound. So far, there has been no clear evidence for a corosolic acid biosynthetic pathway in plants. This article provides possible roles of corosolic acid and hypothetical information on the biosynthetic pathway in plants.  相似文献   
69.
A benzofuran glycinamide-based chemosensor, 3-(2-([4-fluorobenzyl]amino)acetamido)benzofuran-2-carboxamide ( BGA ) was developed and synthesized for the selective and sensitive detection of Fe3+ ions. The photophysical properties of the probe BGA were studied using UV–visible light absorption and fluorescence spectrophotometers. The chemosensor BGA showed a marked ‘on–off’ fluorescence response towards Fe3+ ions in the presence of other metal ions in DMSO/H2O solution (9/1, v/v). The very low limits of detection (LOD) were calculated to be 10 nM and 43 nM using UV–visible light absorption and fluorescence spectrophotometers, respectively. Job's plot analysis revealed the formation of a BGA -Fe3+ complex with a 1:1 binding stoichiometry ratio using UV–visible light spectroscopy. The sensing mechanism was also demonstrated using density functional theory calculation.  相似文献   
70.
Demethyloleuropein plays a major role in the defense mechanism of olive fruits. To understand how this molecule is metabolized during different stages of maturation of olive fruits, a biomolecular approach to identify the demethyloleuropein chemistry was employed. The beta-glucosidase activity in crude extracts was assayed spectrophotometrically using the chromogenic substrate p-nitrophenyl-beta-D-glucopyranoside. Demethyloleuropein was extracted and identified by HPLC-MS from both infected and uninfected olive fruits at different physiological stages. The release of more functionally relevant dialdehydes in uninfected fruits was investigated using ESIMS/ MS. In fruits harvested in October, the activity of beta-glucosidase was significantly enhanced in uninfected fruits when compared to the infected fruits. Quantitative differences in the demethyloleuropein content from uninfected fruits showed the highest values (5.09 mg/g) in October, whereas lower levels (4.44 mg/g) were found in infected fruits. The results demonstrated that demethyloleuropein derivatives could be influenced by beta-glucosidase activity to improve the quality of the olive products with the best dialdehyde nutraceutical content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号