首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   11篇
  178篇
  2022年   1篇
  2021年   7篇
  2020年   6篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   8篇
  2014年   6篇
  2013年   12篇
  2012年   10篇
  2011年   16篇
  2010年   6篇
  2009年   7篇
  2008年   3篇
  2007年   5篇
  2006年   8篇
  2005年   4篇
  2004年   3篇
  2003年   11篇
  2002年   5篇
  2001年   1篇
  2000年   6篇
  1999年   5篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1989年   4篇
  1988年   2篇
  1986年   2篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1966年   1篇
排序方式: 共有178条查询结果,搜索用时 15 毫秒
111.

Background

Modeling of transmembrane domains (TMDs) requires correct prediction of interfacial residues for in-silico modeling and membrane insertion studies. This implies the defining of a target sequence long enough to contain interfacial residues. However, too long sequences induce artifactual polymorphism: within tested modeling methods, the longer the target sequence, the more variable the secondary structure, as though the procedure were stopped before the end of the calculation (which may in fact be unreachable). Moreover, delimitation of these TMDs can produce variable results with sequence based two-dimensional prediction methods, especially for sequences showing polymorphism. To solve this problem, we developed a new modeling procedure using the PepLook method. We scanned the sequences by modeling peptides from the target sequence with a window of 19 residues.

Results

Using sequences whose NMR-structures are already known (GpA, EphA1 and Erb2-HER2), we first determined that the hydrophobic to hydrophilic accessible surface area ratio (ASAr) was the best criterion for delimiting the TMD sequence. The length of the helical structure and the Impala method further supported the determination of the TMD limits. This method was applied to the IL-2Rβ and IL-2Rγ TMD sequences of Homo sapiens, Rattus norvegicus, Mus musculus and Bos taurus.

Conclusions

We succeeded in reducing the variation in the TMD limits to only 2 residues and in gaining structural information.  相似文献   
112.
The role of the innate immunity in the pathogenesis of Crohn’s disease (CD), an inflammatory bowel disease, is a subject of increasing interest. Neutrophils (PMN) are key members of the innate immune system which migrate to sites of bacterial infection and initiate the defence against microbes by producing reactive oxygen species (ROS), before undergoing apoptosis. It is believed that impaired innate immune responses contribute to CD, but it is as yet unclear whether intrinsic defects in PMN signal transduction and corresponding function are present in patients with quiescent disease. We isolated peripheral blood PMN from CD patients in remission and healthy controls (HC), and characterised migration, bacterial uptake and killing, ROS production and cell death signalling. Whereas IL8-induced migration and signalling were normal in CD, trans-epithelial migration was significantly impaired. Uptake and killing of E. coli were normal. However, an increased ROS production was observed in CD PMN after stimulation with the bacterial peptide analogue fMLP, which was mirrored by an increased fMLP-triggered ERK and AKT signal activation. Interestingly, cleavage of caspase-3 and caspase-8 during GMCSF-induced rescue from cell-death was decreased in CD neutrophils, but a reduced survival signal emanating from STAT3 and AKT pathways was concomitantly observed, resulting in a similar percentage of end stage apoptotic PMN in CD patients and HC. In toto, these data show a disturbed signal transduction activation and functionality in peripheral blood PMN from patients with quiescent CD, which point toward an intrinsic defect in innate immunity in these patients.  相似文献   
113.
Water movement between cells in a plant body is the basic phenomenon of plant solute transport; however, it has not been well documented due to limitations in observational techniques. This paper reports a visualization technique to observe water movement among plant cells in different tissues using a time of flight-secondary ion mass spectrometry (Tof-SIMS) cryo-system. The specific purpose of this study is to examine the route of water supply from xylem to stem tissues. The maximum resolution of Tof-SIMS imaging was 1.8 μm (defined as the three pixel step length), which allowed detection of water movement at the cellular level. Deuterium-labelled water was found in xylem vessels in the stem 2.5 min after the uptake of labelled water by soybean plants. The water moved from the xylem to the phloem, cambium, and cortex tissues within 30-60 min after water absorption. Deuterium ion counts in the phloem complex were slightly higher than those in the cortex and cambium tissue seen in enlarged images of stem cell tissue during high transpiration. However, deuterium ion counts in the phloem were lower than those in the cambium at night with no evaporative demand. These results indicate that the stem tissues do not receive water directly from the xylem, but rather from the phloem, during high evaporative demand. In contrast, xylem water would be directly supplied to the growing sink during the night without evaporative demand.  相似文献   
114.
Nitric-oxide synthases (NOS) are heme-thiolate enzymes that generate nitric oxide (NO) from L-arginine. Mammalian and bacterial NOSs contain a conserved tryptophan (Trp) that hydrogen bonds with the heme-thiolate ligand. We mutated Trp(66) to His and Phe (W66H, W66F) in B. subtilis NOS to investigate how heme-thiolate electronic properties control enzyme catalysis. The mutations had opposite effects on heme midpoint potential (-302, -361, and -427 mV for W66H, wild-type (WT), and W66F, respectively). These changes were associated with rank order (W66H < WT < W66F) changes in the rates of oxygen activation and product formation in Arg hydroxylation and N-hydroxyarginine (NOHA) oxidation single turnover reactions, and in the O(2) reactivity of the ferrous heme-NO product complex. However, enzyme ferrous heme-O(2) autoxidation showed an opposite rank order. Tetrahydrofolate supported NO synthesis by WT and the mutant NOS. All three proteins showed similar extents of product formation (L-Arg → NOHA or NOHA → citrulline) in single turnover studies, but the W66F mutant showed a 2.5 times lower activity when the reactions were supported by flavoproteins and NADPH. We conclude that Trp(66) controls several catalytic parameters by tuning the electron density of the heme-thiolate bond. A greater electron density (as in W66F) improves oxygen activation and reactivity toward substrate, but decreases heme-dioxy stability and lowers the driving force for heme reduction. In the WT enzyme the Trp(66) residue balances these opposing effects for optimal catalysis.  相似文献   
115.
116.
117.
Recently human adipose-derived stem cells (ASCs) have shown much therapeutic potential in regenerative medicine. However, fetal bovine serum (FBS) used in culturing human cells may give risk to viral and prion transmission as well as immune rejection. Human serum (HS) is a safer growth supplement in human cell culture but its effects have not been well established. Therefore the objectives of this study were to compare the effects of HS versus FBS on the proliferation and stemness gene expression of ASCs. ASCs were cultured for 5 passages in medium supplemented with either 10% HS or 10% FBS. ASCs proliferation rate and viability were determined at every passage. Total RNA was extracted at passage 5 (P5) and quantitative PCR was carried out to determine the stemness gene expression level of SOX-2, Nanog3, BST-1, REX-1, ABCG2 and FGF-4. The results showed ASC cultured in 10% HS scored greater proliferation rates and viability compared to 10% FBS. ASCs proliferated significantly faster in 10% HS compared to 10% FBS at P2, P3, and P4 (p < 0.05). In quantitative gene expression analysis, ASCs cultured in 10% FBS showed a significant increase of BST-1, REX-1 and ABCG2 expression compared to 10% HS. In conclusion, HS promotes ASCs proliferation and viability but its ability to support the stemness property of ASCs was inferior to FBS.  相似文献   
118.
119.
120.
A series of site-directed mutants of the ferredoxin-dependent spinach nitrite reductase has been characterized and several amino acids have been identified that appear to be involved in the interaction of the enzyme with ferredoxin. In a complementary study, binding constants to nitrite reductase and steady-state kinetic parameters of site-directed mutants of ferredoxin were determined in an attempt to identify ferredoxin amino acids involved in the interaction with nitrite reductase. The results have been interpreted in terms of an in-silico docking model for the 1:1 complex of ferredoxin with nitrite reductase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号