首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   649篇
  免费   43篇
  国内免费   1篇
  693篇
  2022年   6篇
  2021年   8篇
  2020年   4篇
  2019年   6篇
  2018年   15篇
  2017年   6篇
  2016年   8篇
  2015年   33篇
  2014年   35篇
  2013年   30篇
  2012年   61篇
  2011年   44篇
  2010年   25篇
  2009年   26篇
  2008年   25篇
  2007年   33篇
  2006年   26篇
  2005年   32篇
  2004年   22篇
  2003年   28篇
  2002年   15篇
  2001年   17篇
  2000年   18篇
  1999年   13篇
  1998年   5篇
  1997年   4篇
  1996年   7篇
  1995年   5篇
  1994年   5篇
  1992年   8篇
  1991年   13篇
  1990年   6篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1986年   5篇
  1985年   6篇
  1984年   12篇
  1982年   7篇
  1981年   3篇
  1980年   4篇
  1979年   4篇
  1978年   9篇
  1977年   5篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1970年   6篇
  1969年   3篇
  1967年   3篇
排序方式: 共有693条查询结果,搜索用时 12 毫秒
101.
102.
The multi-PDZ domain containing protein Na(+)/H(+) Exchanger Regulatory Factor 1 (NHERF1) binds to Na(+)/H(+) exchanger 3 (NHE3) and is associated with the brush border (BB) membrane of murine kidney and small intestine. Although studies in BB isolated from kidney cortex of wild type and NHERF1(-/-) mice have shown that NHERF1 is necessary for cAMP inhibition of NHE3 activity, a role of NHERF1 in NHE3 regulation in small intestine and in intact kidney has not been established. Here a method using multi-photon microscopy with the pH-sensitive dye SNARF-4F (carboxyseminaphthorhodafluors-4F) to measure BB NHE3 activity in intact murine tissue and use it to examine the role of NHERF1 in regulation of NHE3 activity. NHE3 activity in wild type and NHERF1(-/-) ileum and wild type kidney cortex were inhibited by cAMP, whereas the cAMP effect was abolished in kidney cortex of NHERF1(-/-) mice. cAMP inhibition of NHE3 activity in these two tissues is mediated by different mechanisms. In ileum, a protein kinase A (PKA)-dependent mechanism accounts for all cAMP inhibition of NHE3 activity since the PKA antagonist H-89 abolished the inhibitory effect of cAMP. In kidney, both PKA-dependent and non-PKA-dependent mechanisms were involved, with the latter reproduced by the effect on an EPAC (exchange protein directly activated by cAMP) agonist (8-(4-chlorophenylthio)-2'O-Me-cAMP). In contrast, the EPAC agonist had no effect in proximal tubules in NHERF1(-/-) mice. These data suggest that in proximal tubule, NHERF1 is required for all cAMP inhibition of NHE3, which occurs through both EPAC-dependent and PKA-dependent mechanisms; in contrast, cAMP inhibits ileal NHE3 only by a PKA-dependent pathway, which is independent of NHERF1 and EPAC.  相似文献   
103.
Current methods for prenatal diagnosis of chromosomal aneuploidies involve the invasive sampling of fetal materials using procedures such as amniocentesis or chorionic villus sampling and constitute a finite risk to the fetus. Here, we outline a strategy for fetal chromosome dosage assessment that can be performed noninvasively through analysis of placental expressed mRNA in maternal plasma. We achieved noninvasive prenatal diagnosis of fetal trisomy 21 by determining the ratio between alleles of a single-nucleotide polymorphism (SNP) in PLAC4 mRNA, which is transcribed from chromosome 21 and expressed by the placenta, in maternal plasma. PLAC4 mRNA in maternal plasma was fetal derived and cleared after delivery. The allelic ratios in maternal plasma correlated with those in the placenta. Fetal trisomy 21 was detected noninvasively in 90% of cases and excluded in 96.5% of controls.  相似文献   
104.
105.
Tse JR  Engler AJ 《PloS one》2011,6(1):e15978
Mesenchymal stem cell (MSC) differentiation is regulated in part by tissue stiffness, yet MSCs can often encounter stiffness gradients within tissues caused by pathological, e.g., myocardial infarction ~8.7±1.5 kPa/mm, or normal tissue variation, e.g., myocardium ~0.6±0.9 kPa/mm; since migration predominantly occurs through physiological rather than pathological gradients, it is not clear whether MSC differentiate or migrate first. MSCs cultured up to 21 days on a hydrogel containing a physiological gradient of 1.0±0.1 kPa/mm undergo directed migration, or durotaxis, up stiffness gradients rather than remain stationary. Temporal assessment of morphology and differentiation markers indicates that MSCs migrate to stiffer matrix and then differentiate into a more contractile myogenic phenotype. In those cells migrating from soft to stiff regions however, phenotype is not completely determined by the stiff hydrogel as some cells retain expression of a neural marker. These data may indicate that stiffness variation, not just stiffness alone, can be an important regulator of MSC behavior.  相似文献   
106.
Baseline function and signal transduction are depressed in hearts with hypertrophic failure. We tested the hypothesis that the effects of cGMP and its interaction with cAMP would be reduced in cardiac myocytes from hypertrophic failing hearts. Ventricular myocytes were isolated from control dogs, dogs with aortic valve stenosis hypertrophy, and dogs with pacing hypertrophic failure. Myocyte function was measured using a video edge detector. Cell contraction data were obtained at baseline, with 8-bromo-cGMP (10(-7), 10(-6), and 10(-5) M), with erythro-9-(2-hydroxy-3-nonyl)adenine [EHNA; a cAMP phosphodiesterase (PDE(2)) inhibitor] plus 8-bromo-cGMP, or milrinone (a PDE(3) inhibitor) plus 8-bromo-cGMP. Baseline percent shortening and maximal rates of shortening (R(max)) and relaxation were slightly reduced in hypertrophic myocytes and were significantly lower in failing myocytes (R(max): control dogs, 95.3 +/- 17.3; hypertrophy dogs, 88.2 +/- 5.5; failure dogs, 53.2 +/- 6.4 mum/s). 8-Bromo-cGMP dose dependently reduced myocyte function in all groups. However, EHNA (10(-6) M) and milrinone (10(-6) M) significantly reduced the negative effects of cGMP on cell contractility in control and hypertrophy but not in failing myocytes (R(max) for control dogs: cGMP, -46%; +EHNA, -21%; +milrinone, -19%; for hypertrophy dogs: cGMP, -40%; +EHNA, -13%; +milrinone, -20%; for failure dogs: cGMP, -40%; +EHNA, -29%; +milrinone, -32%). Both combinations of EHNA-cGMP and milrinone-cGMP significantly increased intracellular cAMP in control, hypertrophic, and failing myocytes. These data indicated that the cGMP signaling pathway was preserved in hypertrophic failing cardiac myocytes. However, the interaction of cGMP with the cAMP signaling pathway was impaired in these failing myocytes.  相似文献   
107.
Glucocorticoid is reported to regulate catecholamine synthesis and storage. However, it is not clear whether the actual amount of catecholamine released from individual granules (quantal size, Q) in mature chromaffin cells is affected by glucocorticoid. Using carbon fiber amperometry, we found that dexamethasone did not affect mean cellular Q or the proportional release from different populations of granules in rat chromaffin cells cultured for 1 day in a serum-free defined medium. After two extra days of culture in the defined medium, there was a rundown in mean cellular Q, and it was associated with a shift in the proportional release from the different granule populations. This phenomenon could not be rescued by serum supplementation but could be prevented by dexamethasone via an action that was independent of changes in voltage-gated Ca2+ channel (VGCC) density. Using simultaneous measurements of membrane capacitance and cytosolic Ca2+ concentration, we found that for cells cultured in defined medium dexamethasone enhanced the exocytotic response triggered by a brief depolarization (50 ms) without affecting the VGCC density or the fast exocytotic response triggered via flash photolysis of caged Ca2+. Thus glucocorticoid may regulate the number of immediately releasable granules that are in close proximity to a subset of VGCC. Because chromaffin cells in vivo are exposed to high concentrations of glucocorticoid, our findings suggest that the paracrine actions of glucocorticoid maintain the mean catecholamine content in chromaffin cell granules as well as the colocalization of releasable granules with VGCCs. catecholamines; paracrine action; exocytosis; calcium channels  相似文献   
108.
IFN-alphabeta functions in the transition from innate to adaptive immunity and may impinge on the interaction of Mycobacterium tuberculosis with its host. Infection by M. tuberculosis causes IFN-alphabeta secretion and down-regulation of IFN-alphabeta signaling in human APC and the human monocytic cell line THP-1, which provides a model for these studies. Neutralization of secreted IFN-alphabeta prevents inhibition of IFN-alpha signaling during infection, but several lines of evidence distinguish inhibition due to infection from a negative feedback response to only IFN-alphabeta. First, greater inhibition of IFN-alpha-stimulated STAT-1 tyrosine phosphorylation occurs 3 days postinfection than 1 or 3 days after IFN-alphabeta pretreatment. Second, LPS also induces IFN-alphabeta secretion and causes IFN-alphabeta-dependent down-regulation of IFN-alpha signaling, yet the inhibition differs from that caused by infection. Third, IFN-alpha signaling is inhibited when cells are grown in conditioned medium collected from infected cells 1 day postinfection, but not if it is collected 3 days postinfection. Because IFN-alphabeta is stable, the results with conditioned medium suggest the involvement of an additional, labile substance during infection. Further characterizing signaling for effects of infection, we found that cell surface IFN-alphabeta receptor is not reduced by infection, but that infection increases association of protein tyrosine phosphatase 1c with the receptor and with tyrosine kinase 2. Concomitantly, IFN-alpha stimulation of tyrosine kinase 2 tyrosine phosphorylation and kinase activity decreases in infected cells. Moreover, infection reduces the abundance of JAK-1 and tyrosine-phosphorylated JAK-1. Thus, the distinctive down-regulation of IFN-alpha signaling by M. tuberculosis occurs together with a previously undescribed combination of inhibitory intracellular events.  相似文献   
109.
Many antiviral drugs (e.g. fialuridine; FIAU) produce clinically significant mitochondrial toxicity that limits their dose or prevents their use in the clinic. Because the majority of nucleoside drugs is too hydrophilic to cross the highly impermeable mitochondrial membrane, we have hypothesized that they must be transported into the mitochondria to produce their toxicity. To test this hypothesis, we have sought to determine whether the nucleoside transporters, human equilibrative nucleoside transporter 1 (hENT1) or human concentrative nucleoside transporter 1 (hCNT1), when stably expressed in Madin-Darby canine kidney cells as yellow fluorescent fusion protein (YFP), are localized to the mitochondria. By using organelle-selective dyes and confocal microscopy, we have found that hENT1-YFP is localized to the mitochondria as well as the plasma membrane, whereas hCNT1-YFP was found predominantly on the plasma membrane. hENT1-YFP was not localized to the nuclear envelope, endosomes, lysosomes, or Golgi complex. Western blotting confirmed the presence of hENT1-YFP or endogenous hENT1 in mitochondria isolated from hENT1-YFP-expressing cells and human livers, respectively. In agreement with these localization data, [14C]FIAU was efficiently transported into the mitochondria of cells expressing hENT1-YFP but not of cells expressing hCNT1-YFP. The mitochondrial toxicity of FIAU to Madin-Darby canine kidney cells was enhanced by hENT1-YFP, even when hENT1 activity on the plasma membrane was selectively blocked by 10 nm nitrobenzylthioinosine. Moreover, FIAU (50 microm) produced significant mitochondrial toxicity ( approximately 70% decrease in mitochondrial DNA synthesis) when it was directly incubated with mitochondria isolated from hENT1-expressing cells. In conclusion, we have identified for the first time that hENT1 is expressed on the mitochondrial membrane and that this expression enhances the mitochondrial toxicity of nucleoside drugs such as FIAU. Mitochondrial expression of hENTs may explain the clinically significant mitochondrial toxicity caused by the anti-HIV nucleoside drugs such as zidovudine, stavudine, and didanosine.  相似文献   
110.
Damage to the airway epithelium is common in asthma. Corticosteroids induce apoptosis in and suppress proliferation of airway epithelial cells in culture. Whether apoptosis contributes to impaired epithelial cell repair after injury is not known. We examined whether corticosteroids would impair epithelial cell migration in an in vitro model of wound closure. Wounds (approximately 0.5-1.3 mm2) were created in cultured 1HAEo- human airway epithelial cell monolayers, after which cells were treated with up to 10 microM dexamethasone or budesonide for 24 h. Cultured cells were pretreated for 24 or 48 h with dexamethasone to observe the effect of long-term exposure on wound closure. After 12 h, the remaining wound area in monolayers pretreated for 48 h with 10 microM dexamethasone was 43+/-18% vs. 10+/-8% for untreated control monolayers. The addition of either corticosteroid immediately after injury did not slow closure significantly. After 12 h the remaining wound area in monolayers treated with 10 microM budesonide was 39+/-4% vs. 43+/-3% for untreated control monolayers. The proportion of apoptotic epithelial cells as measured by terminal deoxynucleotidyltransferase-mediated dUTP biotin nick end labeling both at and away from the wound edge was higher in monolayers treated with budesonide compared with controls. However, wound closure in the apoptosis-resistant 1HAEo-.Bcl-2+ cell line was not different after dexamethasone treatment. We demonstrate that corticosteroid treatment before mechanical wounding impairs airway epithelial cell migration. The addition of corticosteroids after injury does not slow migration, despite their ability to induce apoptosis in these cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号