首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   663篇
  免费   64篇
  国内免费   1篇
  2022年   2篇
  2021年   14篇
  2020年   4篇
  2019年   7篇
  2018年   8篇
  2017年   9篇
  2016年   19篇
  2015年   28篇
  2014年   40篇
  2013年   50篇
  2012年   73篇
  2011年   61篇
  2010年   43篇
  2009年   25篇
  2008年   44篇
  2007年   36篇
  2006年   35篇
  2005年   28篇
  2004年   32篇
  2003年   16篇
  2002年   18篇
  2001年   13篇
  2000年   16篇
  1999年   8篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1992年   11篇
  1990年   7篇
  1989年   5篇
  1988年   8篇
  1987年   5篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1977年   3篇
  1976年   6篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1968年   2篇
  1953年   1篇
  1951年   1篇
  1944年   1篇
排序方式: 共有728条查询结果,搜索用时 31 毫秒
41.
Many cyclins are degraded by the ubiquitination/proteasome pathways involving the anaphase-promoting complex and SCF complexes. These degradations are frequently dependent on phosphorylation by cyclin-dependent kinases (CDKs), providing a self-limiting mechanism for CDK activity. Here we present evidence from in vitro and in vivo assay systems that the degradation of human cyclin A can be inhibited by kinase-inactive mutants of CDK2 and CDC2. One obvious interpretation of these results is that like other cyclins, CDK-dependent phosphorylation of the cyclin A may be involved in cyclin A degradation. Our data indicated that CDK2 can phosphorylate cyclin A on Ser-154. Site-directed mutagenesis of Ser-154 abolished the phosphorylation by recombinant CDK2 in vitro and the majority of cyclin A phosphorylation in the cell. Activation of CDK2 and binding to SKP2 or p27(KIP1) were not affected by the phosphorylation of Ser-154. Surprising, in marked contrast to cyclin E, where phosphorylation of Thr-380 by CDK2 is required for proteolysis, degradation of cyclin A was not affected by Ser-154 phosphorylation. It is likely that the stabilization of cyclin A by the kinase-inactive CDKs was mainly due to a cell cycle effect. These data suggest an important difference between the regulation of cyclin A and cyclin E.  相似文献   
42.
43.
The problem of testing treatment difference in the occurrence of a safety parameter in a randomized parallel‐group comparative clinical trial under the assumption that the number of occurrence follows a zero‐inflated Poisson (ZIP) distribution is considered. Likelihood ratio tests (LRT) for homogeneity of two ZIP populations are derived under the hypotheses that (i) there is no difference in inflation parameters, (ii) there is no difference in non‐zero means; and (iii) there is no difference in both inflation parameters and non‐zero means. Approximate formulas for sample size calculation are also obtained for achieving a desired power for detecting a clinically meaningful difference under the corresponding alternative hypotheses. An example concerning the assessment of the gastrointestinal (GI) safety in terms of the number of erosion counts of a newly developed compound for the treatment of osteoarthritis and rheumatoid arthritis is given for illustration purpose (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
44.
Clostridium difficile is an emerging pathogen responsible for opportunistic infections in hospitals worldwide and is the main cause of antibiotic-associated pseudo-membranous colitis and diarrhea in humans. Clostridial toxins A and B (TcdA and TcdB) specifically bind to unknown glycoprotein(s) on the surface of epithelial cells in the host intestine, disrupting the intestinal barrier and ultimately leading to acute inflammation and diarrhea. The C-terminal receptor-binding domain (RBD) of TcdA, which is responsible for the initial binding of the toxin to host glycoproteins, has been predicted to contain 7 potential oligosaccharide-binding sites. To study the specific roles and functions of these 7 putative lectin-like binding regions, a consensus sequence of TcdA RBD derived from different C. difficile strains deposited in the NCBI protein database and three truncated fragments corresponding to the N-terminal (residues 1–411), middle (residues 296–701), and C-terminal portions (residues 524–911) of the RBD (F1, F2 and F3, respectively) were designed and expressed in Escherichia coli. In this study, the recombinant RBD (rRBD) and its truncated fragments were purified, characterized biologically and found to have the following similar properties: (a) are capable of binding to the cell surface of both Vero and Caco-2 cells; (b) possess Toll-like receptor agonist-like adjuvant activities that can activate dendritic cell maturation and increase the secretion of pro-inflammatory cytokines; and (c) function as potent adjuvants in the intramuscular immunization route to enhance immune responses against weak immunogens. Although F1, F2 and F3 have similar repetitive amino acid sequences and putative oligosaccharide-binding domains, they do not possess the same biological and immunological properties: (i) TcdA rRBD and its fragments bind to the cell surface, but only TcdA rRBD and F3 internalize into Vero cells within 15 min; (ii) the fragments exhibit various levels of hemagglutinin (HA) activity, with the exception of the F1 fragment, which demonstrates no HA activity; and (iii) in the presence of alum, all fragments elicit various levels of anti-toxin A-neutralizing antibody responses, but those neutralizing antibodies elicited by F2 did not protect mice against a TcdA challenge. Because TcdA rRBD, F1 and F3 formulated with alum can elicit immune protective responses against the cytotoxicity of TcdA, they represent potential components of future candidate vaccines against C. difficile-associated diseases.  相似文献   
45.
The isolation of OXA-48-producing Enterobacteriaceae has increased dramatically in Mediterranean countries in the past 10 years, and has recently emerged in Asia. Between January 2012 and May 2014, a total of 760 carbapenem non-susceptible Klebsiella pneumoniae (CnSKP) isolates were collected during a Taiwan national surveillance. Carbapenemases were detected in 210 CnSKP isolates (27.6%), including 162 KPC-2 (n = 1), KPC-3, KPC-17, and NDM-1 (n = 1 each), OXA-48 (n = 4), IMP-8 (n = 18), and VIM-1 (n = 24). The four bla OXA-48 CnSKP isolates were detected in late 2013. Herein we report the emergence OXA-48-producing K. pneumoniae isolates in Taiwan. PFGE analysis revealed that the four isolates belonged to three different pulsotypes. Three isolates harboured bla CTX-M genes and belonged to MLST type ST11. In addition, the plasmids belonged to the incompatibility group, IncA/C. One isolate belonged to ST116 and the plasmid incompatibility group was non-typeable. The sequence upstream of the bla OXA-48 gene in all four isolates was identical to pKPOXA-48N1, a bla OXA-48-carrying plasmid. This is the first report of OXA-48-producing Enterobacteriaceae in Taiwan and the second report to identify bla OXA-48 on an IncA/C plasmid in K. pneumoniae. Given that three isolates belong to the same pandemic clone (ST11) and possess the IncA/C plasmid and similar plasmid digestion profile that indicated the role of clonal spread or plasmid for dissemination of bla OXA-48 gene, the emergence of OXA-48-producing K. pneumoniae in Taiwan is of great concern.  相似文献   
46.
47.
Bone remodeling is regulated by secreted factors in the bone microenvironment. However, data regarding osteoclast-derived factors that influence osteoblast differentiation are lacking. Here, we show that HtrA1 is produced as a secreted protein during osteoclastogenesis, and negatively regulates osteoblast differentiation. Exogenous addition of recombinant HtrA1 attenuates osteoblast differentiation and BMP2-induced Smad1/5/8, ERK1/2 and p38 phosphorylation in pre-osteoblasts. Our studies imply a unique mode of crosstalk in which HtrA1 is produced by both osteoclasts and osteoblasts and negatively regulates osteoblast differentiation, suggesting that HtrA1 may mediate the fine tuning of paracrine and autocrine regulations during bone remodeling processes.  相似文献   
48.
Intercellular tight junctions define epithelial apicobasal polarity and form a physical fence which protects underlying tissues from pathogen invasions. PALS1, a tight junction-associated protein, is a member of the CRUMBS3-PALS1-PATJ polarity complex, which is crucial for the establishment and maintenance of epithelial polarity in mammals. Here we report that the carboxy-terminal domain of the SARS-CoV E small envelope protein (E) binds to human PALS1. Using coimmunoprecipitation and pull-down assays, we show that E interacts with PALS1 in mammalian cells and further demonstrate that the last four carboxy-terminal amino acids of E form a novel PDZ-binding motif that binds to PALS1 PDZ domain. PALS1 redistributes to the ERGIC/Golgi region, where E accumulates, in SARS-CoV–infected Vero E6 cells. Ectopic expression of E in MDCKII epithelial cells significantly alters cyst morphogenesis and, furthermore, delays formation of tight junctions, affects polarity, and modifies the subcellular distribution of PALS1, in a PDZ-binding motif-dependent manner. We speculate that hijacking of PALS1 by SARS-CoV E plays a determinant role in the disruption of the lung epithelium in SARS patients.  相似文献   
49.
Formalin‐fixed paraffin‐embedded (FFPE) tissues are the primary and preferred medium for archiving patients' samples. Here we demonstrate relative quantifications of protein biomarkers in extracts of laser microdissected epithelial cells from FFPE endometrial carcinoma tissues versus those from normal proliferative endometria by means of targeted proteomic analyses using LC–multiple reaction monitoring (MRM) MS with MRM Tags for Relative and Absolute Quantitation (mTRAQ) labeling. Comparable results of differential expressions for pyruvate kinase isoform M2 (PK‐M2) and polymeric Ig receptor were observed between analyses on laser microdissected epithelial cells from FFPE tissues and corresponding homogenates from frozen tissues of the same individuals that had previously been analyzed and reported. We also identified PK‐M2 in the normal proliferative phase of the endometrium. Other biomarkers in addition to PK‐M2 and polymeric Ig receptor were also observed but not consistently and/or were at levels below the threshold for quantification.  相似文献   
50.
Soil from the Amazonian region is usually regarded as unsuitable for agriculture because of its low organic matter content and low pH; however, this region also contains extremely rich soil, the Terra Preta Anthrosol. A diverse archaeal community usually inhabits acidic soils, such as those found in the Amazon. Therefore, we hypothesized that this community should be sensitive to changes in the environment. Here, the archaeal community composition of Terra Preta and adjacent soil was examined in four different sites in the Brazilian Amazon under different anthropic activities. The canonical correspondence analysis of terminal restriction fragment length polymorphisms has shown that the archaeal community structure was mostly influenced by soil attributes that differentiate the Terra Preta from the adjacent soil (i.e., pH, sulfur, and organic matter). Archaeal 16S rRNA gene clone libraries indicated that the two most abundant genera in both soils were Candidatus nitrosphaera and Canditatus nitrosocaldus. An ammonia monoxygenase gene (amoA) clone library analysis indicated that, within each site, there was no significant difference between the clone libraries of Terra Preta and adjacent soils. However, these clone libraries indicated there were significant differences between sites. Quantitative PCR has shown that Terra Preta soils subjected to agriculture displayed a higher number of amoA gene copy numbers than in adjacent soils. On the other hand, soils that were not subjected to agriculture did not display significant differences on amoA gene copy numbers between Terra Preta and adjacent soils. Taken together, our findings indicate that the overall archaeal community structure in these Amazonian soils is determined by the soil type and the current land use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号