首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   9篇
  国内免费   2篇
  318篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   6篇
  2018年   12篇
  2017年   6篇
  2016年   12篇
  2015年   19篇
  2014年   17篇
  2013年   33篇
  2012年   33篇
  2011年   27篇
  2010年   18篇
  2009年   11篇
  2008年   21篇
  2007年   17篇
  2006年   15篇
  2005年   10篇
  2004年   8篇
  2003年   9篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1991年   1篇
  1985年   2篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有318条查询结果,搜索用时 2 毫秒
31.
At diagnosis, the majority of pancreatic cancer patients present with advanced disease when curative resection is no longer feasible and current therapeutic treatments are largely ineffective. An improved understanding of molecular targets for effective intervention of pancreatic cancer is thus urgent. The Met receptor tyrosine kinase is one candidate implicated in pancreatic cancer. Notably, Met is over expressed in up to 80% of invasive pancreatic cancers but not in normal ductal cells correlating with poor overall patient survival and increased recurrence rates following surgical resection. However the functional role of Met signaling in pancreatic cancer remains poorly understood. Here we used RNA interference to directly examine the pathobiological importance of increased Met signaling for pancreatic cancer. We show that Met knockdown in pancreatic tumor cells results in decreased cell survival, cell invasion, and migration on collagen I in vitro. Using an orthotopic model for pancreatic cancer, we provide in vivo evidence that Met knockdown reduced tumor burden correlating with decreased cell survival and tumor angiogenesis, with minimal effect on cell growth. Notably, we report that Met signaling regulates the secretion of the pro-angiogenic chemokine interleukin-8/CXCL8. Our data showing that the interleukin-8 receptors CXCR1 and CXCR2 are not expressed on pancreatic tumor cells, suggests a paracrine mechanism by which Met signaling regulates interleukin-8 secretion to remodel the tumor microenvironment, a novel finding that could have important clinical implications for improving the effectiveness of treatments for pancreatic cancer.  相似文献   
32.
Tay Sachs disease (TSD) is a neurodegenerative disorder due to β-hexosaminidase A deficiency caused by mutations in the HEXA gene. The mutations leading to Tay Sachs disease in India are yet unknown. We aimed to determine mutations leading to TSD in India by complete sequencing of the HEXA gene. The clinical inclusion criteria included neuroregression, seizures, exaggerated startle reflex, macrocephaly, cherry red spot on fundus examination and spasticity. Neuroimaging criteria included thalamic hyperdensities on CT scan/T1W images of MRI of the brain. Biochemical criteria included deficiency of hexosaminidase A (less than 2% of total hexosaminidase activity for infantile patients). Total leukocyte hexosaminidase activity was assayed by 4-methylumbelliferyl-N-acetyl-β-D-glucosamine lysis and hexosaminidase A activity was assayed by heat inactivation method and 4-methylumbelliferyl-N-acetyl-β-D-glucosamine-6-sulphate lysis method. The exons and exon-intron boundaries of the HEXA gene were bidirectionally sequenced using an automated sequencer. Mutations were confirmed in parents and looked up in public databases. In silico analysis for mutations was carried out using SIFT, Polyphen2, MutationT@ster and Accelrys Discovery Studio softwares. Fifteen families were included in the study. We identified six novel missense mutations, c.340 G>A (p.E114K), c.964 G>A (p.D322N), c.964 G>T (p.D322Y), c.1178C>G (p.R393P) and c.1385A>T (p.E462V), c.1432 G>A (p.G478R) and two previously reported mutations. c.1277_1278insTATC and c.508C>T (p.R170W). The mutation p.E462V was found in six unrelated families from Gujarat indicating a founder effect. A previously known splice site mutation c.805+1 G>C and another intronic mutation c.672+30 T>G of unknown significance were also identified. Mutations could not be identified in one family. We conclude that TSD patients from Gujarat should be screened for the common mutation p.E462V.  相似文献   
33.
We have designed a tagged probe [sphingolipid binding domain (SBD)] to facilitate the tracking of intracellular movements of sphingolipids in living neuronal cells. SBD is a small peptide consisting of the SBD of the amyloid precursor protein. It can be conjugated to a fluorophore of choice and exogenously applied to cells, thus allowing for in vivo imaging. Here, we present evidence to describe the characteristics of the SBD association with the plasma membrane. Our experiments demonstrate that SBD binds to isolated raft fractions from human neuroblastomas and insect neuronal cells. In protein-lipid overlay experiments, SBD interacts with a subset of glycosphingolipids and sphingomyelin, consistent with its raft association in neurons. We also provide evidence that SBD is taken up by neuronal cells in a cholesterol- and sphingolipid-dependent manner via detergent-resistant microdomains. Furthermore, using fluorescence correlation spectroscopy to assay the mobility of SBD in live cells, we show that SBD's behavior at the plasma membrane is similar to that of the previously described raft marker cholera toxin B, displaying both a fast and a slow component. Our data suggest that fluorescently tagged SBD can be used to investigate the dynamic nature of glycosphingolipid-rich detergent-resistant microdomains that are cholesterol-dependent.  相似文献   
34.

Background

H. pylori causes gastritis and peptic ulcers and is a risk factor for the development of gastric carcinoma. Many of the proteins such as urease, porins, flagellins and toxins such as lipo-polysaccharides have been identified as potential virulence factors which induce proinflammatory reaction. We report immunogenic potentials of isocitrate dehydrogenase (ICD), an important house keeping protein of H. pylori.

Methodology/Principal Findings

Amino acid sequences of H. pylori ICD were subjected to in silico analysis for regions with predictably high antigenic indexes. Also, computational modelling of the H. pylori ICD as juxtaposed to the E. coli ICD was carried out to determine levels of structure similarity and the availability of surface exposed motifs, if any. The icd gene was cloned, expressed and purified to a very high homogeneity. Humoral response directed against H. pylori ICD was detected through an enzyme linked immunosorbent assay (ELISA) in 82 human subjects comprising of 58 patients with H. pylori associated gastritis or ulcer disease and 24 asymptomatic healthy controls. The H. pylori ICD elicited potentially high humoral immune response and revealed high antibody titers in sera corresponding to endoscopically-confirmed gastritis and ulcer disease subjects. However, urea-breath-test negative healthy control samples and asymptomatic control samples did not reveal any detectable immune responses. The ELISA for proinflammatory cytokine IL-8 did not exhibit any significant proinflammatory activity of ICD.

Conclusions/Significance

ICD of H. pylori is an immunogen which interacts with the host immune system subsequent to a possible autolytic-release and thereby significantly elicits humoral responses in individuals with invasive H. pylori infection. However, ICD could not significantly stimulate IL8 induction in a cultured macrophage cell line (THP1) and therefore, may not be a notable proinflammatory agent.  相似文献   
35.
The work focuses towards interaction of harmaline, with nucleic acids of different motifs by multispectroscopic and calorimetric techniques. Findings of this study suggest that binding constant varied in the order single‐stranded (ss) poly(A) > double‐stranded calf thymus (CT) DNA > double‐stranded poly(G)·poly(C) > clover leaf tRNAPhe. Prominent structural changes of ss poly(A), CT DNA, and poly(G)· poly(C) with concomitant induction of optical activity in the bound achiral alkaloid molecule was observed, while with tRNAPhe, very weak induced circular dichroism perturbation was seen. The interaction was predominantly exothermic, enthalpy driven, and entropy favored with CT DNA and poly(G)·poly(C), while it was entropy driven with poly(A) and tRNAPhe. Intercalated state of harmaline inside poly(A), CT DNA, and poly(G)·poly(C) was shown by viscometry, ferrocyanide quenching, and molecular docking. All these findings unequivocally pointed out preference of harmaline towards ss poly(A) inducing self‐structure formation. Furthermore, harmaline administration caused a significant decrease in proliferation of HeLa and HepG2 cells with GI50 of 28μM and 11.2μM, respectively. Nucleic acid fragmentation, cellular ultramorphological changes, decreased mitochondrial membrane potential, upregulation of p53 and caspase 3, generation of reactive oxygen species, and a significant increase in the G2/M population made HepG2 more prone to apoptosis than are HeLa cells.  相似文献   
36.
Genetically modified (GM) crops undergo large scale multi-location field trials to characterize agronomics, composition, and the concentration of newly expressed protein(s) [herein referred to as transgenic protein(s)]. The concentration of transgenic proteins in different plant tissues and across the developmental stages of the plant is considered in the safety assessment of GM crops. Reference or housekeeping proteins are expected to maintain a relatively stable expression pattern in healthy plants given their role in cellular functions. Understanding the effects of genotype, growth stage and location on the concentration of endogenous housekeeping proteins may provide insight into the contribution these factors could have on transgenic protein concentrations in GM crops. The concentrations of three endogenous proteins (actin, elongation factor 1-alpha, and glyceraldehyde 3-phosphate dehydrogenase) were measured in several different maize hybrids grown across multiple field locations over 2 years. Leaf samples were collected from healthy plants at three developmental stages across the growing seasons, and protein concentrations were quantified by indirect enzyme-linked immunosorbent assay (ELISA) for each protein. In general, the concentrations of these three endogenous proteins were relatively consistent across hybrid backgrounds, when compared within one growth stage and location (2–26%CV), whereas the concentrations of proteins in the same hybrid and growth stage across different locations were more variable (12–64%CV). In general, the protein concentrations in 2013 and 2014 show similar trends in variability. Some degree of variability in protein concentrations should be expected for both transgenic and endogenous plant-expressed proteins. In the case of GM crops, the potential variation in protein concentrations due to location effects is captured in the current model of multi-location field testing.  相似文献   
37.
The ubiquitous SbcCD exonuclease complex has been shown to perform an important role in DNA repair across prokaryotes and eukaryotes. However, they have remained uncharacterized in the ancient and stress-tolerant cyanobacteria. In the cyanobacterium Anabaena sp. strain PCC7120, SbcC and SbcD homologs, defined on the basis of the presence of corresponding functional domains, are annotated as hypothetical proteins, namely Alr3988 and All4463 respectively. Unlike the presence of sbcC and sbcD genes in a bicistronic operon in most organisms, these genes were distantly placed on the chromosome in Anabaena, and found to be negatively regulated by LexA. Both the genes were found to be essential in Anabaena as the individual deletion mutants were non-viable. On the other hand, the proteins could be individually overexpressed in Anabaena with no effect on normal cell physiology. However, they contributed positively to enhance the tolerance to different DNA damage-inducing stresses, such as mitomycin C and UV- and γ-radiation. This indicated that the two proteins, at least when overexpressed, could function independently and mitigate the damage caused due to the formation of DNA adducts and single- and double-strand breaks in Anabaena. This is the first report on possible independent in vivo functioning of SbcC and SbcD homologs in any bacteria, and the first effort to functionally characterize the proteins in any cyanobacteria.  相似文献   
38.
39.
The paper describes the bio efficacy of a protease inhibitor; isolated from Allium sativumgarlic’ (ASPI); against Aedes aegypti mosquito, a well-known transmitter of dengue and Chikungunya. The purification of protease inhibitor from Allium sativumgarlic’ (ASPI) was carried out by ammonium sulfate precipitation followed by Fast Protein Liquid Chromatography using akta DEAE-Cellulose column. The protein fraction demonstrating trypsin inhibitory activity was further evaluated for its insecticidal activity using gut protease inhibition assay and larvicidal assay. ASPI is an inhibitor of porcine trypsin (IC50 of 650.726?μg/mL) and has molecular weight of ~15?kDa determined by SDS PAGE similar to other inhibitors of the Kunitz-type family (14–26?kDa). ASPI demonstrated 50% reduced activity of Ae. aegypti midgut proteases and showed a dose-dependent acute toxicity on Ae. aegypti 3rd instars exhibiting LC50 value of ~50.827?μg/mL. After ten days of larval exposure ASPI resulted in a 24-h delay of larval development and ~72% mortality at 61.5?μg/mL. These results suggest that ASPI may serve as potent insecticidal agent and hence opens a new gateway in the field of phyto-remediation.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号