We found that certain mid-range consumer-level digital single-lens reflex (SLR) cameras using full-frame complementary metal oxide semiconductor (CMOS) sensors outperform X-ray film in acquiring signals from immunoblots that use enhanced chemiluminescence for detection. These cameras exhibit a sensitivity comparable to X-ray film, yet they provide a 3-fold increase in linear dynamic range and substantial cost savings over time, are more convenient to use, and eliminate the chemical waste associated with processing film. 相似文献
Miniaturized bubble columns (MBCs) have different hydrodynamics in comparison with the larger ones, but there is a lack of scientific data on MBCs. Hence, in this study, the effect of gas hold-up, flow regimes, bubble size distribution on volumetric oxygen mass transfer coefficient at different pore size spargers and gas flow rates in MBCs in the presence and absence of microorganisms were investigated. It was found that flow regime transition occurred around low gas flow rates of 1.18 and 0.85 cm/s for small (16–40 µm) and large (40–100 µm) pore size spargers, respectively. Gas hold-up and KLa in MBC with small size sparger were higher than those with larger one, with an increasing effect in the presence of microorganisms. A comparison revealed that the wall effect on the flow regime and gas hold-up in MBCs was greater than bench-scale bubble columns. The KLa values significantly increased up to tenfold using small pore size sparger. In the MBC and stirred tank bioreactors, the maximum obtained cell concentrations were OD600 of 41.5 and 43.0, respectively. Furthermore, it was shown that in MBCs, higher KLa and lower turbulency could be achieved at the end of bubbly flow regime.
Isoaspartyl sites, in which an aspartic acid residue is linked to its C-flanking neighbor via its beta-carboxyl side chain, are generally assumed to be an abnormal modification arising as proteins age. The enzyme protein L-isoaspartate methyltransferase (PIMT), present in many bacteria, plants, and animals, catalyzes the conversion of isoaspartate to normal alpha-linked aspartyl bonds and is thought to serve an important repair function in cells. Having introduced a plasmid into Escherichia coli that allows high-level expression of rat PIMT, we explored the possibility that the rat enzyme reduces isoaspartate levels in E. coli proteins, a result predicted by the repair hypothesis. The present study demonstrates that this is indeed the case; E. coli cells expressing rat PIMT had significantly lower isoaspartate levels than control cells, especially in stationary phase. Moreover, the distribution of isoaspartate-containing proteins in E. coli differed dramatically between logarithmic- and stationary-phase cultures. In stationary-phase cells, a number of proteins in the molecular mass range of 66 to 14 kDa contained isoaspartate, whereas in logarithmic-phase cells, nearly all of the detectable isoaspartate resided in a single 14-kDa protein which we identified as ribosomal protein S11. The near stoichiometric levels of isoaspartate in S11, estimated at 0.5 mol of isoaspartate per mol of S11, suggests that this unusual modification may be important for S11 function. 相似文献
Bovine brain is known to contain two major isoforms of protein L-isoaspartyl methyltransferase (PIMT), an enzyme that facilitates repair of atypical L-isoaspartyl peptide bonds in proteins. Although the two isoforms can be separated by anion-exchange chromatography, they appear to have similar, if not identical, substrate specificities in vitro. The more basic type I isoform has been extensively characterized, and its complete sequence has been reported. The present study was undertaken in an attempt to understand the structural and functional uniqueness of the more acidic type II isoform. Electrospray mass spectrometry of the intact enzymes revealed that the type II isoform is approximately 43 amu heavier than the type I isoform. Cyanogen bromide cleavage followed by HPLC with on-line mass analysis revealed that the type II isoform contains a unique C-terminal fragment which is 43 amu heavier than the corresponding fragment from the type I isoform. Amino acid composition analysis and direct sequencing of this fragment indicate that the type II isoform ends in the sequence ...RDEL, while the type I is known to end in ...RWK. Since ...RDEL, like ...KDEL, serves as an effective endoplasmic reticulum retention signal, we propose that the type II isoform serves to repair damaged proteins within the endoplasmic reticulum or, perhaps, within some other specialized compartment of the cell. Comparison of the protein sequences of the two bovine brain isoforms to DNA sequences for rodent PIMT reported by others suggests that the type II isoform may be produced by splicing within the codon for Arg224. 相似文献
Kinetic studies on the activity of purified cGMP-dependent protein kinase and catalytic subunit of cAMP-dependent protein kinase have been carried out using a protein termed G-substrate (see preceding paper) as the phosphate acceptor. Each enzyme catalyzed the phosphorylation of 2.0-2.1 mol of 32P/mol of G-substrate, with phosphorylation occurring primarily at threonine residues. When phosphorylation was carried out in the simultaneous presence of the two enzymes, the stoichiometry increased only slightly, to a value of 2.4, suggesting that both enzymes phosphorylated the same two sites. Initial rate studies on the phosphorylation of G-substrate by cGMP-dependent protein kinase yielded a Km of 0.21 microM and a Vmax of 2.2 mumol/min/mg. Similar studies with the cAMP-dependent protein kinase yielded a Km of 5.8 microM and a Vmax of 2.3 mumol/min/mg. cGMP-dependent protein kinase thus exhibited a high degree of specificity towards this substrate which was apparently based on selective substrate binding rather than catalytic efficacy. The activity of cGMP-dependent protein kinase towards G-substrate was maximal at pH 7.5-8.0 and a Mg2+ concentration of 1-3 mM. Activity declined sharply at high ionic strength (greater than 20 mM KCl). 相似文献
Adding NAD to murine T lymphocytes inhibits their functions and induces annexin V binding. This report shows that NAD induces cell death in a subset of T cells within seconds whereas others do not die until many hours later. Low NAD concentrations (<10 microM) suffice to trigger rapid cell death, which is associated with annexin V binding and membrane pore formation, is not blocked by the caspase inhibitor Z-VADfmk, and requires functional P2X7 receptors. The slower induction of death requires higher NAD concentrations (>100 microM), is blocked by caspase inhibitor Z-VADfmk, is associated with DNA fragmentation, and does not require P2X7 receptors. T cells degrade NAD to ADP-ribose (ADPR), and adding ADPR to T cells leads to slow but not rapid cell death. NAD but not ADPR provides the substrate for ADP-ribosyltransferase (ART-2)-mediated attachment of ADP-ribosyl groups to cell surface proteins; expression of ART-2 is required for NAD to trigger rapid but not slow cell death. These results support the hypothesis that cell surface ART-2 uses NAD but not ADPR to attach ADP-ribosyl groups to the cell surface, and that these groups act as ligands for P2X7 receptors that then induce rapid cell death. Adding either NAD or ADPR also triggers a different set of mechanisms, not requiring ART-2 or P2X7 receptors that more slowly induce cell death. 相似文献