首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5460篇
  免费   416篇
  5876篇
  2024年   3篇
  2023年   37篇
  2022年   84篇
  2021年   149篇
  2020年   69篇
  2019年   118篇
  2018年   137篇
  2017年   130篇
  2016年   198篇
  2015年   306篇
  2014年   336篇
  2013年   439篇
  2012年   518篇
  2011年   500篇
  2010年   305篇
  2009年   246篇
  2008年   347篇
  2007年   342篇
  2006年   319篇
  2005年   255篇
  2004年   250篇
  2003年   218篇
  2002年   197篇
  2001年   38篇
  2000年   24篇
  1999年   34篇
  1998年   47篇
  1997年   21篇
  1996年   26篇
  1995年   20篇
  1994年   13篇
  1993年   13篇
  1992年   34篇
  1991年   14篇
  1990年   9篇
  1989年   8篇
  1988年   10篇
  1987年   5篇
  1986年   9篇
  1985年   8篇
  1984年   4篇
  1983年   6篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1975年   2篇
  1939年   1篇
排序方式: 共有5876条查询结果,搜索用时 0 毫秒
231.
Cdc6 proteins play an essential role in the initiation of chromosomal DNA replication in Eukarya. Genes coding for putative homologs of Cdc6 have been also identified in the genomic sequence of Archaea, but the properties of the corresponding proteins have been poorly investigated so far. Herein, we report the biochemical characterization of one of the three putative Cdc6-like factors from the hyperthermophilic crenarchaeon Sulfolobus solfataricus (SsoCdc6-1). SsoCdc6-1 was overproduced in Escherichia coli as a His-tagged protein and purified to homogeneity. Gel filtration and glycerol gradient ultracentrifugation experiments indicated that this protein behaves as a monomer in solution (molecular mass of about 45 kDa). We demonstrated that SsoCdc6-1 binds single- and double-stranded DNA molecules by electrophoretic mobility shift assays. SsoCdc6-1 undergoes autophosphorylation in vitro and possesses a weak ATPase activity, whereas the protein with a mutation in the Walker A motif (Lys-59 --> Ala) is completely unable to hydrolyze ATP and does not autophosphorylate. We found that SsoCdc6-1 strongly inhibits the ATPase and DNA helicase activity of the S. solfataricus MCM protein. These findings provide the first in vitro biochemical evidence of a functional interaction between a MCM complex and a Cdc6 factor and have important implications for the understanding of the Cdc6 biological function.  相似文献   
232.
By lyophilizing RNase A from 40% acetic acid solutions, two dimeric aggregates, the "minor" and "major" dimers (named here N-dimer and C-dimer, respectively), form by 3D domain swapping at a ratio of 1:4. Trimeric and tetrameric aggregates are also obtained. The two dimers and the higher oligomers also form without a lyophilization step. By keeping RNase A dissolved at a high concentration (generally 200 mg/ml) in various media at temperatures ranging from 23 to 70 degrees C for times varying from a few minutes to 2 h, various oligomers, in particular the two dimeric conformers, formed in quite different amounts, often inverting their relative quantities depending on the more or less severe unfolding conditions. When unfolding mainly concerned the N terminus of the protein, richer in hydrophilic residues, the N-dimer, formed by 3D domain swapping of the N-terminal alpha-helix of each monomer, prevailed over the C-dimer. Under more vigorous denaturing conditions, where also the C terminus of RNase A, richer in hydrophobic amino acids, unfolded, the C-dimer, formed by 3D domain swapping of the C-terminal beta-strand, prevailed over the other, possibly because of the induction to aggregation promoted by the hydrophobic residues present in the C termini of the two monomers.  相似文献   
233.
Endothelin-1 (ET-1) is overexpressed in ovarian carcinoma and acts as an autocrine factor selectively through the ETA receptor (ETAR) to promote tumor cell proliferation, survival, neovascularization, and invasiveness. Loss of gap junctional intercellular communication (GJIC) is critical for tumor progression by allowing the cells to escape growth control. Exposure of HEY and OVCA 433 ovarian carcinoma cell lines to ET-1 led to a 50-75% inhibition in intercellular communication and to a decrease in the connexin 43 (Cx43)-based gap junction plaques. To investigate the phosphorylation state of Cx43, ovarian carcinoma cell lysates were immunoprecipitated and transient tyrosine phosphorylation of Cx43 was detected in ET-1-treated cells. BQ 123, a selective ETAR antagonist, blocked the ET-1-induced Cx43 phosphorylation and cellular uncoupling. Gap junction closure was prevented by tyrphostin 25 and by the selective c-Src inhibitor, PP2. Furthermore, the increased Cx43 tyrosine phosphorylation was correlated with ET-1-induced increase of c-Src activity, and PP2 suppressed the ET-1-induced Cx43 tyrosine phosphorylation, indicating that inhibition of Cx43-based GJIC is mainly mediated by the Src tyrosine kinase pathway. In vivo, the inhibition of human ovarian tumor growth in nude mice induced by the potent ETAR antagonist, ABT-627, was associated with a reduction of Cx43 phosphorylation. These findings indicate that the signaling mechanisms involved in GJIC disruption on ovarian carcinoma cells depend on ETAR activation, which leads to the Cx43 tyrosine phosphorylation mediated by c-Src, suggesting that ETAR blockade may contribute to the control of ovarian carcinoma growth and progression also by preventing the loss of GJIC.  相似文献   
234.
A number of different kinases have been implicated in NF-kappa B regulation and survival function. Here we investigated the molecular cross-talk between glycogen synthase kinase-3 beta (GSK-3 beta) and the p105 precursor of the NF-kappa B p50 subunit. GSK-3 beta forms an in vivo complex with and specifically phosphorylates NF-kappa B1/p105 at Ser-903 and Ser-907 in vitro. In addition, the p105 phosphorylation level is reduced in fibroblasts lacking GSK-3 beta as compared with wild-type cells. GSK-3 beta has a dual effect on p105: it stabilizes p105 under resting conditions and primes p105 for degradation upon tumor necrosis factor (TNF)-alpha treatment. Indeed, constitutive processing of p105 to p50 occurs at a higher rate in cells lacking GSK-3 beta with respect to wild-type cells and can be reduced upon reintroduction of GSK-3 beta by transfection. Moreover, p105 degradation in response to TNF-alpha is prevented in GSK-3 beta-/- fibroblasts and by a Ser to Ala point mutation on p105 at positions 903 or 907. Interestingly, the increased sensitiveness to TNF-alpha-induced death occurring in GSK-3 beta-/- fibroblasts, which is coupled to a perturbation of p50/105 ratio, can be reproduced by p105 silencing in wild-type fibroblasts.  相似文献   
235.
There is growing evidence that high concentrations of nitric oxide (NO), generated by activated astrocytes, might be involved in a variety of neurodegenerative diseases, such as Alzheimer's disease, ischemia and epilepsy. It has recently been suggested that glial cells may produce NO under superoxide radical stimulation by enzyme-independent mechanism. This suggests that also natural antioxidants may have therapeutical relevance in neurodegenerative diseases. Studies of Bhattacharya et al. have evidenced that Bacopa monniera (BM) (family Scrophulariaceae), an Ayurvedic medicinal plant clinically used for memory enhancing, epilepsy, insomnia and as a mild sedative, is able to reduce the memory-dysfunction in rat models of Alzheimer's disease, but the molecular mechanisms of this action are yet to be determined. In the present study, we examined the effect of a methanolic extract of BM on toxicity induced by the nitric oxide donor, S-nitroso-N-acetyl-penicillamine (SNAP), in culture of purified rat astrocytes. Our results indicate that, after 18 h of treatment, SNAP induced an increase in the production of reactive species, but did not induce the rupture of cellular membrane. Conversely, this NO donor induced a fragmentation of genomic DNA compared to control astrocytes. The extract of BM inhibited the formation of reactive species and DNA damage in a dose dependent manner. This data supports the traditional use of BM and indicates that this medicinal plant has a therapeutic potential in treatment or prevention of neurological diseases.  相似文献   
236.
3-hydroxykynurenine as a substrate/activator for mushroom tyrosinase   总被引:1,自引:0,他引:1  
3-Hydroxykynurenine is a tryptophan metabolite with an o-aminophenol structure. It is both a tyrosinase activator and a substrate, reducing the lag phase, stimulating the monophenolase activity, and being oxidized to xanthommatin. In the early stage of monophenol hydroxylation, catechol accumulation takes place, whereas 3-hydroxykynurenine is substantially unchanged and no significant amounts of the o-quinone are produced. These results suggest an activating action of 3-hydroxykynurenine toward o-hydroxylation of monophenols. 3-Hydroxykynurenine could therefore well act as a physiological device to control phenolics metabolism to catechols and quinonoids.  相似文献   
237.
238.
During a two year preliminary study, the spatial organization of a group of male Alpine ibexCapra ibex ibex Linnaeus, 1758 was examined in the Gran Paradiso National Park, Western Italian Alps, Italy. From December 1995 to January 1998 we measured annual, seasonal home range and home range during the rut, plus altitudinal migration of 13 radio-collared adult Alpine ibex. The small annual home range size showed a traditional use of space, confirmed by the high overlapping values between home ranges of consecutive years: the ibex used the same places from year to year. This was also true during periods of rut. Home ranges closely overlapped in consecutive ruts, while their size changed from winter to winter. Snow cover limited the movements of the ibex; winter and spring home ranges were smaller than those in summer and autumn. Mean vertical movement patterns were similar in the two years, showing the highest values in summer and the lowest in spring. Space use was never proportional to availability for each altitudinal range.  相似文献   
239.
Lignin peroxidase catalyses the H(2)O(2)-induced oxidation of 4-methoxybenzyltrimethylsilane by an electron transfer mechanism. The intermediate radical cation undergoes preferentially C(alpha)[bond]H deprotonation to give 4-methoxybenzaldehyde whereas C(alpha)[bond]Si bond cleavage is a minor fragmentation pathway and leads to 4-methoxybenzyl alcohol. Similar results are obtained in the oxidation catalysed by the water soluble model compound 5,10,15,20-tetra(N-methyl-4-pyridyl)porphyrinatoiron(III) pentachloride. Instead, in the oxidation promoted by the genuine one-electron transfer oxidant potassium dodecatungstocobalt(III)ate C(alpha)[bond]Si bond cleavage is the exclusive fragmentation process of the intermediate radical cation. It is suggested that in the enzymatic and biomimetic oxidations of 4-methoxybenzyltrimethylsilane the deprotonation of the intermediate radical cation is promoted by the reduced form [PorFe(IV)[double bond]O] of the active oxidant, which is an iron-oxo porphyrin radical cation.  相似文献   
240.
Photosynthetic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Spinacia oleracea belongs to a wide group of GAPDHs found in most organisms displaying oxygenic photosynthesis, including cyanobacteria, green and red algae, and higher plants. As a major catalytic difference with respect to glycolytic GAPDH, photosynthetic GAPDH exhibits dual cofactor specificity toward pyridine nucleotides with a preference for NADP(H). Here we report the crystal structure of NAD-complexed recombinant A(4)-GAPDH (NAD-A(4)-GAPDH) from Spinacia oleracea, expressed in Escherichia coli. Its superimposition onto native A(4)-GAPDH complexed with NADP (NADP-A(4)-GAPDH) pinpoints specific conformational changes resulting from cofactor replacement. In photosynthetic NAD-A(4)-GAPDH, the side chain of Asp32 is oriented toward the coenzyme to interact with the adenine ribose diol, similar to glycolytic GAPDHs (NAD-specific). On the contrary, in NADP-A(4)-GAPDH Asp32 moves away to accommodate the additional 2'-phosphate group of the coenzyme and to minimize electrostatic repulsion. Asp32 rotation is allowed by the presence of the small residue Ala40, conserved in most photosynthetic GAPDHs, replacing bulky amino acid side chains in glycolytic GAPDHs. While in NADP-A(4)-GAPDH two amino acids, Thr33 and Ser188, are involved in hydrogen bonds with the 2'-phosphate group of NADP, in the NAD-complexed enzyme these interactions are lacking. The crystallographic structure of NAD-A(4)-GAPDH highlights that four residues, Thr33, Ala40, Ser188, and Ala187 (Leu, Leu, Pro, and Leu respectively, in glycolytic Bacillus stearothermophilus GAPDH sequence) are of primary importance for the dual cofactor specificity of photosynthetic GAPDH. These modifications seem to trace the minimum evolutionary route for a primitive NAD-specific GAPDH to be converted into the NADP-preferring enzyme of oxygenic photosynthetic organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号