首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   925篇
  免费   47篇
  2023年   9篇
  2022年   29篇
  2021年   45篇
  2020年   20篇
  2019年   27篇
  2018年   34篇
  2017年   21篇
  2016年   49篇
  2015年   46篇
  2014年   51篇
  2013年   44篇
  2012年   69篇
  2011年   74篇
  2010年   42篇
  2009年   34篇
  2008年   47篇
  2007年   49篇
  2006年   43篇
  2005年   37篇
  2004年   22篇
  2003年   23篇
  2002年   29篇
  2001年   14篇
  2000年   4篇
  1999年   6篇
  1998年   6篇
  1997年   5篇
  1995年   6篇
  1994年   6篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1990年   9篇
  1989年   3篇
  1988年   9篇
  1987年   5篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   8篇
  1980年   3篇
  1979年   3篇
  1976年   2篇
  1974年   4篇
  1973年   2篇
  1965年   1篇
  1964年   1篇
  1953年   3篇
排序方式: 共有972条查询结果,搜索用时 0 毫秒
971.
Solar‐assisted photoelectrochemical (PEC) water splitting to produce hydrogen energy is considered the most promising solution for clean, green, and renewable sources of energy. For scaled production of hydrogen and oxygen, highly active, robust, and cost‐effective PEC electrodes are required. However, most of the available semiconductors as a PEC electrodes have poor light absorption, material degradation, charge separation, and transportability, which result in very low efficiency for photo‐water splitting. Generally, a promising photoelectrode is obtained when the surface of the semiconductor is modified/decorated with a suitable co‐catalyst because it increases the light absorbance spectrum and prevents electron–hole recombination during photoelectrode reactions. In this regard, numerous p‐ and d‐block elements, single atoms, and graphene‐based PEC electrodes have been widely used as semiconductor/co‐catalyst junctions to boost the performances of PEC overall water splitting. This review enumerates the recent progress and applications of p‐ and d‐block elements, single atoms, and graphene‐based PEC electrodes for water splitting. The focus is placed on fundamental mechanism, efficiency, cells design, and various aspects that contribute to the large‐scale prototype device. Finally, future perspectives, summary, challenges, and outlook for improving the activity of PEC photoelectrodes toward whole‐cell water splitting are addressed.  相似文献   
972.
The black swallowtail butterfly, Papilio polyxenes, larvae are specialized feeders of pro-oxidant rich plants of Apiaceae and Rutaceae. An important defense against toxic forms of oxygen species generated by ingestion of the pro-oxidants, are the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), GSH-dependent glutathione peroxidases (selenium-dependent glutathione peroxidase [GPOX] and peroxidase activity of selenium-independent glutathione-S-transferase [GTpx]), and glutathione reductase (GR). The subcellular distribution of these enzymes in black swallowtail larvae was investigated and was found to resemble the patterns described for larvae of two other lepidopteran species: the southern armyworm, Spodoptera eridania, and the cabbage looper, Trichoplusia ni. The confinement of SOD in the cytosol and mitochondria was typically eukaryotic, but the relative proportion (1:1) was markedly different from the mammalian pattern (4:1; cytosol:mitochondria). The most obvious difference between the black swallowtail and other lepidoptera as a group, and mammalian species, is in very wide intracellular distributions of CAT, GTpx, and GR in insect species. Insects possess very low levels of a GPOX-like activity which reduces both H2O2 and organic peroxides. Consequently, insects have elaborate activities with a wide subcellular distribution of both CAT which decomposes H2O2, and GTpx which decomposes organic peroxides. The reduction of peroxides is dependent on GSH, which in this process is oxidized to GSSG. GR which reduces GSSG to GSH is also of wide subcellular distribution, analogous to the distribution pattern of GTpx.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号