首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   1篇
  108篇
  2021年   2篇
  2017年   1篇
  2016年   3篇
  2015年   7篇
  2014年   11篇
  2013年   11篇
  2012年   7篇
  2011年   4篇
  2010年   5篇
  2009年   2篇
  2008年   7篇
  2007年   11篇
  2006年   6篇
  2005年   8篇
  2004年   3篇
  2003年   4篇
  2002年   1篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1968年   1篇
排序方式: 共有108条查询结果,搜索用时 0 毫秒
71.
72.
The regulation of metabolism and growth must be tightly coupled to guarantee the efficient use of energy and anabolic substrates throughout the cell cycle. Fructose 2,6-bisphosphate (Fru-2,6-BP) is an allosteric activator of 6-phosphofructo-1-kinase (PFK-1), a rate-limiting enzyme and essential control point in glycolysis. The concentration of Fru-2,6-BP in mammalian cells is set by four 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1–4), which interconvert fructose 6-phosphate and Fru-2,6-BP. The relative functions of the PFKFB3 and PFKFB4 enzymes are of particular interest because they are activated in human cancers and increased by mitogens and low oxygen. We examined the cellular localization of PFKFB3 and PFKFB4 and unexpectedly found that whereas PFKFB4 localized to the cytoplasm (i.e. the site of glycolysis), PFKFB3 localized to the nucleus. We then overexpressed PFKFB3 and observed no change in glucose metabolism but rather a marked increase in cell proliferation. These effects on proliferation were completely abrogated by mutating either the active site or nuclear localization residues of PFKFB3, demonstrating a requirement for nuclear delivery of Fru-2,6-BP. Using protein array analyses, we then found that ectopic expression of PFKFB3 increased the expression of several key cell cycle proteins, including cyclin-dependent kinase (Cdk)-1, Cdc25C, and cyclin D3 and decreased the expression of the cell cycle inhibitor p27, a universal inhibitor of Cdk-1 and the cell cycle. We also observed that the addition of Fru-2,6-BP to HeLa cell lysates increased the phosphorylation of the Cdk-specific Thr-187 site of p27. Taken together, these observations demonstrate an unexpected role for PFKFB3 in nuclear signaling and indicate that Fru-2,6-BP may couple the activation of glucose metabolism with cell proliferation.Neoplastic transformation and growth require a massive increase in glucose uptake and glycolytic flux not only for energy production but also for the synthesis of nucleic acids, amino acids, and fatty acids. A central control point of glycolysis is the negative allosteric regulation of a rate-limiting enzyme, phosphofructokinase-1 (PFK-1),2 by ATP (i.e. the Pasteur effect) (1, 2). When intracellular ATP production exceeds usage, ATP inhibits PFK-1 and glycolytic flux. Fructose 2,6-bisphosphate (Fru-2,6-BP) is a potent allosteric activator of PFK-1 that overrides this inhibitory influence of ATP on PFK-1, allowing forward flux of the entire pathway (35).The steady-state cellular concentration of Fru-2,6-BP is dependent on the activities of bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB), which are encoded by four independent genes (PFKFB1–4) (6, 7). The PFKFB3 mRNA is distinguished by the presence of multiple copies of an AUUUA instability motif in its 3′-untranslated region and the PFKFB3 protein product has a high kinase:phosphatase activity ratio (740:1) (8). PFKFB3 mRNA is overexpressed by rapidly proliferating transformed cells and the PFKFB3 protein is highly expressed in solid tumors and leukemias (811). PFKFB3 expression is increased in response to several mitogenic stimuli, including progesterone, serum, and insulin (1214). These studies indicate that the PFKFB3 enzyme may serve an essential function in the regulation of glucose metabolism during cell proliferation.The PFKFB3 mRNA is spliced into several variants that encode distinct carboxyl-terminal domains (9, 15). Importantly, the functional consequences of the disparate carboxyl-terminal variants of PFKFB3 are unknown. The mRNA splice variant 5 is the dominant PFKFB3 mRNA in human brain, several transformed cells, and colon adenocarcinoma tissues (9, 10). In the following series of experiments, we present data that the carboxyl-terminal domain of PFKFB3 variant 5 localizes the enzyme to the nucleus where its product, Fru-2,6-BP, increases the expression and activity of cyclin-dependent kinase-1. These data demonstrate a heretofore unidentified function of the PFKFB3 enzyme that is distinct from glycolysis, and provide a potential mechanism for the coupling of metabolism and proliferation.  相似文献   
73.
74.
The mammalian ORMDL proteins are orthologues of the yeast Orm proteins (Orm1/2), which are regulators of ceramide biosynthesis. In mammalian cells, ceramide is a proapoptotic signaling sphingolipid, but it is also an obligate precursor to essential higher order sphingolipids. Therefore levels of ceramide are expected to be tightly controlled. We tested the three ORMDL isoforms for their role in homeostatically regulating ceramide biosynthesis in mammalian cells. Treatment of cells with a short chain (C6) ceramide or sphingosine resulted in a dramatic inhibition of ceramide biosynthesis. This inhibition was almost completely eliminated by ORMDL knockdown. This establishes that the ORMDL proteins mediate the feedback regulation of ceramide biosynthesis in mammalian cells. The ORMDL proteins are functionally redundant. Knockdown of all three isoforms simultaneously was required to alleviate the sphingolipid-mediated inhibition of ceramide biosynthesis. The lipid sensed by the ORMDL-mediated feedback mechanism is medium or long chain ceramide or a higher order sphingolipid. Treatment of permeabilized cells with C6-ceramide resulted in ORMDL-mediated inhibition of the rate-limiting enzyme in sphingolipid biosynthesis, serine palmitoyltransferase. This indicates that C6-ceramide inhibition requires only membrane-bound elements and does not involve diffusible proteins or small molecules. We also tested the atypical sphingomyelin synthase isoform, SMSr, for its role in the regulation of ceramide biosynthesis. This unusual enzyme has been reported to regulate ceramide levels in the endoplasmic reticulum. We were unable to detect a role for SMSr in regulating ceramide biosynthesis. We suggest that the role of SMSr may be in the regulation of downstream metabolism of ceramide.  相似文献   
75.
76.
The mechanisms through which p38 mitogen-activated protein kinase (p38 MAPK) is involved in smooth muscle contraction remain largely unresolved. We examined the role of p38 MAPK in prostaglandin F(2alpha) (PGF(2alpha))-induced vasoconstriction and in hypoxic pulmonary vasoconstriction (HPV) of rat small intrapulmonary arteries (IPA). The p38 MAPK inhibitors SB-203580 and SB-202190 strongly inhibited PGF(2alpha)-induced vasoconstriction, with IC(50)s of 1.6 and 1.2 microM, whereas the inactive analog SB-202474 was approximately 30-fold less potent. Both transient and sustained phases of HPV were suppressed by SB-203580, but not by SB-202474 (both 2 microM). Western blot analysis revealed that PGF(2alpha) (20 microM) increased phosphorylation of p38 MAPK and of heat shock protein 27 (HSP27), and this was abolished by SB-203580 but not by SB-202474 (both 2 microM). Endothelial denudation or blockade of endothelial nitric oxide (NO) synthase with N(omega)-nitro-L-arginine methyl ester (L-NAME) significantly suppressed the relaxation of PGF(2alpha)-constricted IPA by SB-203580, but not by SB-202474. Similarly, the inhibition of HPV by SB-203580 was prevented by prior treatment with L-NAME. SB-203580 (2 microM), but not SB-202474, enhanced relaxation-induced by the NO donor S-nitroso-N-acetylpenicillamine (SNAP) in endothelium-denuded IPA constricted with PGF(2alpha). In alpha-toxin-permeabilized IPA, SB-203580-induced relaxation occurred in the presence but not the absence of the NO donor sodium nitroprusside (SNP); SB-202474 was without effect even in the presence of SNP. In intact IPA, neither PGF(2alpha)- nor SNAP-mediated changes in cytosolic free Ca(2+) were affected by SB-203580. We conclude that p38 MAPK contributes to PGF(2alpha)- and hypoxia-induced constriction of rat IPA primarily by antagonizing the underlying Ca(2+)-desensitizing actions of NO.  相似文献   
77.
Emerging issues in traditional Chinese medicine   总被引:1,自引:0,他引:1  
Traditional Chinese medicine (TCM) has many beneficial effects and has been practiced for several thousand years. It is known to treat the cause of a disease rather than to alleviate its symptoms. Based on a belief that TCM is natural, safe, and of lower cost, consumers worldwide are spending more out-of-pocket money on this form of therapy. This increased spending, and reports of adverse reactions, has drawn the attention of many regulatory agencies. Scientists have called for more evidence-based and scientific research on the risks and benefits of TCM. In Canada, the Natural Health Product Regulations came into effect January 2004. TCM herbal product manufacturers will need to provide products of reputable quality to the market. Many will apply modern technology and good science to support their products. The issues facing producers, scientists, and consumers alike are quality control and assessment, standardization of bioactive components, mechanisms of actions, and integration of the evolved modern Chinese medicine into the healthcare system. Solid science, better regulation of the final product, and better education of consumers are necessary to extract the best of TCM to complement existing conventional medicine to deliver the best healthcare.  相似文献   
78.
Epidemiological studies have revealed that postmenopausal estrogen replacement therapy results in a marked reduction in the risk for cardiovascular diseases. In the present study, we evaluated plasma lipoprotein profile as well as homocysteine levels in 145 postmenopausal and premenopausal Chinese women living in Hong Kong. We also investigated the effect of hormonereplacement therapy (HRT) with estrogen or estrogen combined with progestin on plasma lipoprotein profile and homocysteine concentrations in those individuals. Postmenopausal women displayed significantly higher plasma levels of total cholesterol, LDLcholesterol and apoB as well as higher plasma homocysteine levels than that of premenopausal women. HRT with either estrogen (17-estradiol or conjugated equine estrogen) alone or estrogen combined with progestin for 3.5–4.5 years significantly improved the lipoprotein profile in postmenopausal women by decreasing the levels of total cholesterol (12–20% reduction), LDL-cholesterol (26–29% reduction) and apoB (21–25% reduction). In women treated with 17estradiol or conjugated equine estrogens their plasma levels of apoAI were significantly elevated (18% elevation) as compared to non-users. HRT also reduced plasma concentrations of homocysteine (13–15% reduction). In conclusion, we found that long-term HRT was associated with improvement in plasma lipoprotein profile and a reduction in homocysteine concentration in postmenopausal women. These results support the notion that the improvement of lipoprotein profile and a reduction in homocysteine concentration may contribute to the beneficial effect of HRT on cardiovascular risk.  相似文献   
79.
Mitogen activated protein (MAP) kinases and their target ribosomal protein S6 (RSK) kinases have been recognized as shared components in the intracellular signaling pathways of many diverse cytokines. Recent studies have extended this protein kinase cascade by identifying the major activator of vertebrate MAP kinases as a serine/threonine/tyrosine-protein kinase called MEK, which is related to yeast mating factor-regulated protein kinases encoded by the STE7 and byr1 genes. MEK, in turn, may be activated following its phosphorylation on serine by either of the kinases encoded by proto-oncogenesraf1 ormos, as well as by p78 mekk , which is related to the yeast STE11 and byr2 gene products. Isoforms of all of these protein kinases may specifically combine to assemble distinct modules for intracellular signal transmission. However, the fundamental architecture of these protein kinase cascades has been highly conserved during eukaryotic evolution.  相似文献   
80.
Pyridoxal phosphate-dependent DOPA decarboxylase has been purified from bovine striatum to a specific activity of 1.6 U/mg protein. After ammonium sulfate precipitation (30–60%) it was purified by DEAE-Sephacel, Sephacryl S-200, and TSK Phenyl 5 PW chromatography. The purified enzyme showed a single silver staining band with polyacrylamide gel electrophoresis under both denaturing and non-denaturing conditions. The bovine striatal DOPA decarboxylase is a dimer (subunit Mr = 56000 by SDS-PAGE) with a native Mr of 106000 as judged by chromatography on Sephacryl S-200 and by sedimentation analysis. Similar to the DOPA decarboxylase purified from non-CNS tissues, the bovine striatal enzyme requires free sulfhydryl groups for activity, is strongly inhibited by heavy metal ions, and can decarboxylate 5-hydroxytryptophan as well. It should be noted, however, that the final enzyme preparation is enriched in DOPA decarboxylase activity. The distribution of the DOPA decarboxylase and 5-HTP decarboxylase activities also varies among several bovine brain regions. In addition, heat treatment of the enzyme preparation inactivated the two decarboxylation activities at different rates.Abbreviations AADC Aromatic L-amino Acid Decarboxylase - CNS Central Nervous System - DOPA 3,4-dihydroxyphenylalanine - DTT Dithiothreitol, 5-HTP - 5-hydroxytryptophan - Mr relative molecular weight - PLP pyridoxal 5-phosphate - SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis Part of this paper was presented at the 1987 Annual Pharmacology and Toxicology Conferences held at University of North Dakota School of Medicine, North Dakota, USA Res Commun Psychol Psychiat Behav 12: 227–228, 1987 (Abstr).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号