首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   6篇
  2023年   2篇
  2022年   3篇
  2021年   10篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   10篇
  2013年   1篇
  2012年   15篇
  2011年   4篇
  2010年   8篇
  2009年   4篇
  2008年   8篇
  2007年   12篇
  2006年   7篇
  2005年   2篇
  2004年   2篇
  2002年   3篇
  2001年   2篇
  1999年   2篇
排序方式: 共有113条查询结果,搜索用时 31 毫秒
51.
Owing to the growing need for novel antibacterial agents, we synthesized a novel series of fluoroquinolones including 7-substituted-1-(2,4-difluorophenyl)-6-fluoro-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxylic acid derivatives, which were tested against clinically relevant Gram positive and Gram negative bacteria. Chemical structures of the synthesized compounds were identified using spectroscopic methods. In vitro antimicrobial effects of the compounds were determined via microdilution assay. Microbiological examination revealed that compounds 13 and 14 possess a good antibacterial profile. Compound 14 was the most active and showed an antibacterial profile comparable to that of the reference drugs trovafloxacin, moxifloxacin, and ciprofloxacin. A significant MIC90 value (1.95 μg/mL) against S. aureus ATCC 25923, E. coli ATCC 35218, and E. coli ATCC 25922 was recorded for compound 14. We observed reduced metabolic activity associated with compounds 13 and 14 in the relevant bacteria via a luminescence ATP assay. Results of this assay supported the antibacterial potency of compounds 13 and 14. An E. coli DNA gyrase inhibitory assay indicated that compound 14 is a potent inhibitor of E. coli DNA gyrase. Docking studies revealed that there is a strong interaction between compound 14 and the E. coli DNA gyrase enzyme. Genotoxicity and cytotoxicity evaluations of compounds 13 and 14 showed that compound 14 is non-genotoxic and less cytotoxic compared to the reference drugs (trovafloxacin, moxifloxacin, and ciprofloxacin), which increases its biological importance.  相似文献   
52.
In this study, lemon peels were used as volatile component source. Automatic solvent extraction has been used for the recovery of limonene rich citrus volatile extract for the first time. The process parameters (amount of raw material, immersion time and washing time) were analyzed to optimize the process by means of Box-Behnken design via response surface methodology. The optimum conditions were achieved by ~10 g fresh lemon peel, and ~15 min immersion time and ~13 min washing time. The difference between the actual (89.37 mg/g limonene) and predicted (90.85 mg/g limonene) results was satisfactory (<2 %). α-Terpinene, β-pinene, citral, ɣ-terpinene and linalool were determined as other major volatiles in the peel extract. FT-IR and 1H- and 13C-NMR spectroscopies were applied to verify the identified volatile compounds.  相似文献   
53.
Macrocephaly-cutis marmorata telangiectatica congenita (M-CMTC) is characterized by macrocephaly, cutis marmorata, capillary malformations, toe syndactily, joint laxity and pre-natal overgrowth. Cerebral abnormalities might also be seen. We reported cerebral magnetic resonance imaging (MRI) findings of a case with M-CMTC, who had giant atrial septal aneurysm and atrial septal defect. Cerebral alterations determined by MRI were bilateral prominent lateral ventricles, bilateral cortical dysplasia, cavum septi pellucidum cyst and calvarial hemangioma. At 17th day of his life he suddenly developed cardiorespiratory arrest and died.  相似文献   
54.
Soil charcoal is an indicator of Holocene fires as well as a palaeoecological signature of pre-Colombian land use in Neotropical rain forests. To document rain forest fire history, we examined soil charcoal patterns in continuous old-growth forests along an elevational transect from sea level to the continental divide on the Atlantic slope of Costa Rica. At 10 elevations we sampled 1-ha plots, using 16 cores/ha to collect 1.5-m deep soil samples. We found charcoal in soils at every elevation, with total dry mass ranging from 3.18 g/m2 at 2000-m elevation to as much as 102.7 g/m2 at 300 m. Soil charcoal is most abundant at the wettest lowland sites (60–500 m) and less at montane elevations (> 1000 m) where there is less rainfall. Between 30- and 90-cm soil depth, soil charcoal is present consistently and every 1-ha plot has charcoal evidence for multiple fire events. Radiocarbon dates range from 23,240 YBP at 1750-m elevation to 140 YBP at 2600 m. Interestingly, none of the charcoal samples from 2600 m are older than 170 yr, which suggests that forests near the continental divide are relatively young replacement stands that have re-established since the most recent localized volcanic eruption on Volcán Barva. We propose that these old-growth forests have been disturbed infrequently but multiple times as a consequence of anthropogenic and natural fires.  相似文献   
55.
56.
Vibrio cholerae switches between free-living motile and surface-attached sessile lifestyles. Cyclic diguanylate (c-di-GMP) is a signaling molecule controlling such lifestyle changes. C-di-GMP is synthesized by diguanylate cyclases (DGCs) that contain a GGDEF domain and is degraded by phosphodiesterases (PDEs) that contain an EAL or HD-GYP domain. We constructed in-frame deletions of all V. cholerae genes encoding proteins with GGDEF and/or EAL domains and screened mutants for altered motility phenotypes. Of 52 mutants tested, four mutants exhibited an increase in motility, while three mutants exhibited a decrease in motility. We further characterized one mutant lacking VC0137 (cdgJ), which encodes an EAL domain protein. Cellular c-di-GMP quantifications and in vitro enzymatic activity assays revealed that CdgJ functions as a PDE. The cdgJ mutant had reduced motility and exhibited a small decrease in flaA expression; however, it was able to produce a flagellum. This mutant had enhanced biofilm formation and vps gene expression compared to that of the wild type, indicating that CdgJ inversely regulates motility and biofilm formation. Genetic interaction analysis revealed that at least four DGCs, together with CdgJ, control motility in V. cholerae.Cyclic diguanylate (c-di-GMP) is a ubiquitous second messenger in bacteria. It is synthesized by diguanylate cyclases (DGCs) that contain a GGDEF domain and is degraded by phosphodiesterases (PDEs) that contain an EAL or HD-GYP domain (46, 48, 50). The receptors of c-di-GMP, which can be proteins or RNAs (riboswitches), bind to c-di-GMP and subsequently transmit the signal to downstream targets (22). C-di-GMP signaling is predicted to occur via a common or localized c-di-GMP pool(s) through so-called c-di-GMP signaling modules harboring DGCs and PDEs, receptors, and targets that affect cellular function (22).C-di-GMP controls various cellular functions, including the transition between a planktonic lifestyle and biofilm lifestyle. In general, high concentrations of c-di-GMP promote the expression of adhesive matrix components and result in biofilm formation, while low concentrations of c-di-GMP result in altered motility upon changes in flagellar or pili function and/or production (reviewed in reference 25). C-di-GMP inversely regulates motility and biofilm formation by implementing control at different levels through gene expression or through posttranslational mechanisms (reviewed in reference 25).Vibrio cholerae, the causative agent of the disease cholera, uses c-di-GMP signaling to undergo a motile-to-sessile lifestyle switch that is important for both environmental and in vivo stages of the V. cholerae life cycle. The survival of the pathogen in both natural aquatic environments and during infection depends on the appropriate regulation of motility, surface attachment, and colonization factors (26). The V. cholerae genome encodes a total of 62 putative c-di-GMP metabolic enzymes: 31 with a GGDEF domain, 12 with an EAL domain, 10 with both GGDEF and EAL domains, and 9 with an HD-GYP domain (21). V. cholerae contains a few known or predicted c-di-GMP receptors: two riboswitches (53), five PilZ domain proteins (43), VpsT (31), and CdgG (6). C-di-GMP regulates virulence, motility, biofilm formation, and the smooth-to-rugose phase variation in V. cholerae (6, 8, 9, 12, 30, 33, 43, 45, 54, 56, 57). However, particular sets of proteins have not been matched to discrete cellular processes.Some of the DGCs and PDEs involved in regulating motility in V. cholerae have been identified: rocS and cdgG mutants exhibit a decrease in motility (45), while cdgD and cdgH mutants exhibit an increase in motility (6). In addition, VieA (PDE) positively regulates motility in the V. cholerae classical biotype but not in the El Tor biotype (7). AcgA (PDE) positively regulates motility at low concentrations of inorganic phosphate (42). In this study, we investigated the role of each putative gene encoding DGCs and PDEs in controlling cell motility. In addition to the already-characterized proteins CdgD, CdgH, and RocS, we identified two putative DGCs (CdgK and CdgL) that negatively control motility and a putative PDE (CdgJ) that positively controls motility. We further characterized CdgJ and showed that it functions as a PDE and inversely regulates motility and biofilm formation. Genetic interaction studies revealed that DGCs CdgD, CdgH, CdgL, and CdgK and PDE CdgJ form a c-di-GMP signaling network to control motility in V. cholerae.  相似文献   
57.
Reproductive health of humans and animals exposed to daily irradiants from solar/cosmic particles remains largely understudied. We evaluated the sensitivities of bovine and mouse oocytes to bombardment by krypton-78 (1 Gy) or ultraviolet B (UV-B; 100 microjoules). Mouse oocytes responded to irradiation by undergoing massive activation of caspases, rapid loss of energy without cytochrome-c release, and subsequent necrotic death. In contrast, bovine oocytes became positive for annexin-V, exhibited cytochrome-c release, and displayed mild activation of caspases and downstream DNAses but with the absence of a complete cell death program; therefore, cytoplasmic fragmentation was never observed. However, massive cytoplasmic fragmentation and increased DNA damage were induced experimentally by both inhibiting RAD51 and increasing caspase 3 activity before irradiation. Microinjection of recombinant human RAD51 prior to irradiation markedly decreased both cytoplasmic fragmentation and DNA damage in both bovine and mouse oocytes. RAD51 response to damaged DNA occurred faster in bovine oocytes than in mouse oocytes. Therefore, we conclude that upon exposure to irradiation, bovine oocytes create a physiologically indeterminate state of partial cell death, attributed to rapid induction of DNA repair and low activation of caspases. The persistence of these damaged cells may represent an adaptive mechanism with potential implications for livestock productivity and long-term health risks associated with human activity in space.  相似文献   
58.
59.
Recently, BRCA1 germline mutations were found in a high proportion (14-34%) of patients with triple-negative breast cancer (TNBC). BRCA2 was either not analyzed or showed much lower mutation frequencies. Therefore, we screened a group of TNBC patients (n = 30) of white European descent for mutations in BRCA2 as well as in BRCA1. Cases were unselected for age of disease-onset (median age at breast cancer diagnosis was 58 years, ranging from 37 to 74 years), family history of cancer and BRCA1 and BRCA2 mutation status. Half of the patients (15/30) showed a family history of breast and/or ovarian cancer. A high frequency of deleterious germline mutations was observed in BRCA2 (5/30; 16.7%), and only one case showed a BRCA1 mutation (3.3%). Although the study group was small, these results point to BRCA2 mutations being important in TNBC.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号