首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   13篇
  国内免费   4篇
  204篇
  2024年   1篇
  2023年   11篇
  2022年   3篇
  2021年   13篇
  2020年   7篇
  2019年   8篇
  2018年   11篇
  2017年   6篇
  2016年   13篇
  2015年   7篇
  2014年   10篇
  2013年   14篇
  2012年   10篇
  2011年   19篇
  2010年   12篇
  2009年   6篇
  2008年   8篇
  2007年   7篇
  2006年   9篇
  2005年   4篇
  2004年   12篇
  2003年   9篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1991年   1篇
排序方式: 共有204条查询结果,搜索用时 15 毫秒
101.
Human corticosteroid-binding globulin (CBG), a heavily glycosylated protein containing six N-linked glycosylation sites, transports cortisol and other corticosteroids in blood circulation. Here, we investigate the biological importance of the N-glycans of CBG derived from human serum by performing a structural and functional characterization of CBG N-glycosylation. Liquid chromatography-tandem MS-based glycoproteomics and glycomics combined with exoglycosidase treatment revealed 26 complex type N-glycoforms, all of which were terminated with α2,3-linked neuraminic acid (NeuAc) residues. The CBG N-glycans showed predominantly bi- and tri-antennary branching, but higher branching was also observed. N-glycans from all six N-glycosylation sites were identified with high site occupancies (70.5-99.5%) and glycoforms from all sites contained a relatively low degree of core-fucosylation (0-34.9%). CBG showed site-specific glycosylation and the site-to-site differences in core-fucosylation and branching could be in silico correlated with the accessibility to the individual glycosylation sites on the maturely folded protein. Deglycosylated and desialylated CBG analogs were generated to investigate the biological importance of CBG N-glycans. As a functional assay, MCF-7 cells were challenged with native and glycan-modified CBG and the amount of cAMP, which is produced as a quantitative response upon CBG binding to its cell surface receptor, was used to evaluate the CBG:receptor interaction. The removal of both CBG N-glycans and NeuAc residues increased the production of cAMP significantly. This confirms that N-glycans are involved in the CBG:receptor interaction and indicates that the modulation is performed by steric and/or electrostatic means through the terminal NeuAc residues.  相似文献   
102.
Pinus nigra Arn. subsp. pallasiana (black pine) is one of the most widely grown tree in Turkey. It is the third most widely distributed tree species after Quercus L. and Pinus brutia Ten. Black pine grows in 20% of all forested areas in Turkey. In this dendroecological study, we identified the most important climate factors affecting radial growth of black pine in western Anatolia and classified its responses to climate. Twenty-eight site chronologies developed by different researchers were used in the analysis. Response functions were calculated for each chronology to identify the effect of climate on radial growth. Hierarchical cluster analysis was used to sort response functions and to classify the chronologies into groups based on climate responses. The individual responses of these chronologies to temperature and precipitation were classified in four main groups. Climatic and phytogeographic differences were the major factors influencing the formation of clusters. The results suggest that the major limiting factor is drought caused by low precipitation, especially in May, in almost all sites. The drought effect is much stronger in the transition region to the steppe, Central Anatolia and Mediterranean Regions than the Black Sea Region. Black pine trees respond positively to higher temperature at the beginning of growing season in almost all areas except in transition region to the steppe.  相似文献   
103.
Alport Syndrome is a genetic disease characterized by breakdown of the glomerular basement membrane (GBM) around blood vessels in the kidney, leading to kidney failure in most patients. It is the second most inherited kidney disease in the US, and many other symptoms are associated with the disease, including hearing loss and ocular lesions. Here we probe the molecular level structure–property relationships of this disease using a bottom-up computational materiomics approach implemented through large-scale molecular dynamics simulation. Since the GBM is under constant mechanical loading due to blood flow, changes in mechanical properties due to amino acid mutations may be critical in the symptomatic GBM breakdown seen in Alport Syndrome patients. Through full-atomistic simulations in explicit solvent, the effects of single-residue glycine substitution mutations of varying clinical severity are studied in short segments of type IV tropocollagen molecules. The segments with physiological amino acid sequences are equilibrated and then subjected to tensile loading. Major changes are observed at the single molecule level of the mutated sequence, including a bent shape of the structures after equilibration (with the kink located at the mutation site) and a significant alteration of the molecules’ stress–strain responses and stiffnesses. These results suggest that localized structural changes at amino acid level induce severe alterations of the molecular properties. Our study opens a new approach in pursuing a bottom-up multi-scale analysis of this disease.  相似文献   
104.
A horizontal subsurface flow (HSSF) and a free water surface flow (FWSF) constructed wetlands (4 m2 of each) were set up on the campus of Harran University, Sanliurfa, Turkey. The main objective of the research was to compare the performance of two systems to decide the better one for future planning of wastewater treatment system on the campus. Both of the wetland systems were planted with Phragmites australis and Canna indica. During the observation period (10 months), environmental conditions such as pH, temperature and total chemical oxygen demand (COD), soluble COD, total biochemical oxygen demand (BOD), soluble BOD, total suspended solids (TSS), total phosphate (TP), total nitrogen (TN) removal efficiencies of the systems were determined. According to the results, average yearly removal efficiencies for the HSSF and the FWSF, respectively, were as follows: total COD (75.7% and 69.9%), soluble COD (85.4% and 84.3%), total BOD (79.6% and 87.6%), soluble BOD (87.7% and 95.3%), TN (33.2% and 39.4%), and TP (31.5% and 6.5%). Soluble COD and BOD removal efficiencies of both systems increased gradually since the start-up. After nine months of operation, above 90% removal of organic matters were observed. The treatment performances of the HSSF were better than that of the FWSF with regard to the removal of suspended solids and total COD at especially high temperatures. In FWSF systems, COD concentrations extremely exceeded the discharge limit values due to high concentrations of algae in spring months.The performance of the two systems was modelled using an artificial neural network-back-propagation algorithm. The ANN model was competent at providing reasonable match between the measured and the predicted concentrations of total COD (R = 0.90 for HSSF and R = 0.96 for FWSF), soluble COD (R = 0.90 for HSSF and R = 0.74 for FWSF) and total BOD (R = 0.94 for HSSF and R = 0.84 for FWSF) in the effluents of constructed wetlands.  相似文献   
105.
Journal of Molecular Modeling - The organoselenium compound ebselen has recently been investigated as a treatment for COVID-19; however, efforts to model ebselen in silico have been hampered by the...  相似文献   
106.
Biological Trace Element Research - Approximately 350–400 million people in the world have Hbs Ag (hepatitis B virus surface antigen) positivity. In the international guidelines, the...  相似文献   
107.
Arsenic, an element found in nature, causes hazardous effects on living organisms. Meanwhile, natural compounds exhibit protective effects against hazardous substances. This study evaluated the effects of boron against arsenic‐induced genotoxicity and altered biochemical parameters in rats. Thirty‐five male Wistar albino rats were equally divided into five groups, and the experimental period lasted 30 days. One group was used as the control, and another group was treated with 100 mg/L arsenic in drinking water. The other groups were orally treated with 5, 10, and 20 mg/kg boron plus arsenic (100 mg/L via drinking water). Arsenic caused changes in biochemical parameters, total oxidant/antioxidant status, and DNA damage in mononuclear leukocytes. Moreover, it increased IFN‐γ, IL‐1β, TNF‐α, and NFκB mRNA expression levels in rat tissue. However, boron treatment improved arsenic‐induced alterations in biochemical parameters and increases in DNA damage and proinflammatory cytokine gene expressions.  相似文献   
108.
Collagens play important roles in development and homeostasis in most higher organisms. In order to function, collagens require the specific chaperone HSP47 for proper folding and secretion. HSP47 is known to bind to the collagen triple helix, but the exact positions and numbers of binding sites are not clear. Here, we employed a collagen II peptide library to characterize high-affinity binding sites for HSP47. We show that many previously predicted binding sites have very low affinities due to the presence of a negatively charged amino acid in the binding motif. In contrast, large hydrophobic amino acids such as phenylalanine at certain positions in the collagen sequence increase binding strength. For further characterization, we determined two crystal structures of HSP47 bound to peptides containing phenylalanine or leucine. These structures deviate significantly from previously published ones in which different collagen sequences were used. They reveal local conformational rearrangements of HSP47 at the binding site to accommodate the large hydrophobic side chain from the middle strand of the collagen triple helix and, most surprisingly, possess an altered binding stoichiometry in the form of a 1:1 complex. This altered stoichiometry is explained by steric collisions with the second HSP47 molecule present in all structures determined thus far caused by the newly introduced large hydrophobic residue placed on the trailing strand. This exemplifies the importance of considering all three sites of homotrimeric collagen as independent interaction surfaces and may provide insight into the formation of higher oligomeric complexes at promiscuous collagen-binding sites.  相似文献   
109.
110.
Genome-wide linkage and association studies have demonstrated promise in identifying genetic factors that influence health and disease. An important challenge is to narrow down the set of candidate genes that are implicated by these analyses. Protein-protein interaction (PPI) networks are useful in extracting the functional relationships between known disease and candidate genes, based on the principle that products of genes implicated in similar diseases are likely to exhibit significant connectivity/proximity. Information flow?based methods are shown to be very effective in prioritizing candidate disease genes. In this article, we utilize the topology of PPI networks to infer functional information in the context of disease association. Our approach is based on the assumption that PPI networks are organized into recurrent schemes that underlie the mechanisms of cooperation among different proteins. We hypothesize that proteins associated with similar diseases would exhibit similar topological characteristics in PPI networks. Utilizing the location of a protein in the network with respect to other proteins (i.e., the "topological profile" of the proteins), we develop a novel measure to assess the topological similarity of proteins in a PPI network. We then use this measure to prioritize candidate disease genes based on the topological similarity of their products and the products of known disease genes. We test the resulting algorithm, Vavien, via systematic experimental studies using an integrated human PPI network and the Online Mendelian Inheritance in Man (OMIM) database. Vavien outperforms other network-based prioritization algorithms as shown in the results and is available at www.diseasegenes.org.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号