首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   968篇
  免费   60篇
  国内免费   4篇
  1032篇
  2024年   3篇
  2023年   12篇
  2022年   44篇
  2021年   56篇
  2020年   48篇
  2019年   78篇
  2018年   60篇
  2017年   27篇
  2016年   38篇
  2015年   43篇
  2014年   47篇
  2013年   73篇
  2012年   87篇
  2011年   70篇
  2010年   39篇
  2009年   31篇
  2008年   32篇
  2007年   51篇
  2006年   25篇
  2005年   37篇
  2004年   16篇
  2003年   17篇
  2002年   9篇
  2001年   12篇
  2000年   7篇
  1999年   9篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1992年   5篇
  1991年   4篇
  1990年   5篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1984年   3篇
  1983年   7篇
  1982年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   5篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   3篇
  1969年   1篇
排序方式: 共有1032条查询结果,搜索用时 14 毫秒
991.
The gene encoding proline dehydrogenase (ProDH) from Pseudomonas fluorescence was isolated using PCR amplification and cloned into pET23a expression vector. The expression of the recombinant target enzyme was induced by addition of IPTG. The produced His-fusion enzyme was purified and its kinetic properties were studied. The 3D structure modeling was also performed to identify key amino acids involved in FAD-binding and catalysis. The PCR product contained a 1033 bp open reading frame encoding 345 amino acid residue polypeptide chain. SDS-PAGE analysis revealed a MW of 40 kDa, whereas the native enzyme exhibited a MW of 40 kDa suggesting a monomeric protein. The K(m) and V(max) values of the P. fluorescence ProDH were estimated to be 35 mM and 116 micromol/min, respectively. ProDH activity was stable at alkaline pH and the highest activity was observed at 30 degrees C and pH 8.5. The modeling analysis of the three dimensional structure elucidated that Lys-173 and Asp-202, which were oriented near the hydroxyl group of the substrate, were essential residues for the ProDH activity. This study, to our knowledge, is the first data on the cloning and biochemical and structural properties of P. fluorescence ProDH.  相似文献   
992.
An α-cyclodextrin-[60]fullerene conjugate with a flexible linker at the secondary face of α-cyclodextrin has been prepared, which displays significant water solubility and, more importantly, acts as a new class of HCV entry inhibitor with IC(50) at 0.17μM level.  相似文献   
993.
Molecular Biology Reports - Flavonoids have been demonstrated to have the ability of sensitizing cancer cells to chemotherapy and inverse multidrug resistance via various mechanisms, such as...  相似文献   
994.

The changes in lipid peroxidation, H2O2, proline, protein, involvement of different antioxidant systems (catalase, guaiacol peroxidase, ascorbate peroxidase) and callus-related traits were investigated under salt stress in the callus of two different ploidy levels of Brassica including B. juncea and B. oleracea. The calluses of B. juncea genotypes were less sensitive to NaCl stress in comparison with those of B. oleracea while increasing the concentrations of NaCl from 0 to 200 mM. Tetraploid genotype (B. juncea cr3356) showed a significant increase in the contents of protein and proline, and guaiacol peroxidase activity and catalase enzymes at higher salinity levels. In addition, a significant decrease occurred in the amount of H2O2 and malondialdehyde along with increasing the salinity intensity. Diploid cultivar (B. oleracea bra 2828) had the lowest enzymatic activities and the highest content of H2O2 and malondialdehyde along with an increase in the salinity level. Therefore, this genotype was identified as the most sensitive cultivar under the salinity stress. The salinity resistance difference between diploid and amphidiploid species could be attributed to the differences in the ploidy level of these species. This result underlines the fact that the tetraploid genome of B. oleracea could be considered as a suitable candidate for production under salinity conditions through maintaining higher activities of antioxidant enzymes.

  相似文献   
995.
996.
997.
Voltage-gated sodium channels (Nav) produce sodium currents that underlie the initiation and propagation of action potentials in nerve and muscle cells. Fibroblast growth factor homologous factors (FHFs) bind to the intracellular C-terminal region of the Nav α subunit to modulate fast inactivation of the channel. In this study we solved the crystal structure of a 149-residue-long fragment of human FHF2A which unveils the structural features of the homology core domain of all 10 human FHF isoforms. Through analysis of crystal packing contacts and site-directed mutagenesis experiments we identified a conserved surface on the FHF core domain that mediates channel binding in vitro and in vivo. Mutations at this channel binding surface impaired the ability of FHFs to co-localize with Navs at the axon initial segment of hippocampal neurons. The mutations also disabled FHF modulation of voltage-dependent fast inactivation of sodium channels in neuronal cells. Based on our data, we propose that FHFs constitute auxiliary subunits for Navs.  相似文献   
998.
The modulation of cellular processes by small molecule inhibitors, gene inactivation, or targeted knockdown strategies combined with phenotypic screens are powerful approaches to delineate complex cellular pathways and to identify key players involved in disease pathogenesis. Using chemical genetic screening, we tested a library of known phosphatase inhibitors and identified several compounds that protected Bacillus anthracis infected macrophages from cell death. The most potent compound was assayed against a panel of sixteen different phosphatases of which CD45 was found to be most sensitive to inhibition. Testing of a known CD45 inhibitor and antisense phosphorodiamidate morpholino oligomers targeting CD45 also protected B. anthracis-infected macrophages from cell death. However, reduced CD45 expression did not protect anthrax lethal toxin (LT) treated macrophages, suggesting that the pathogen and independently added LT may signal through distinct pathways. Subsequent, in vivo studies with both gene-targeted knockdown of CD45 and genetically engineered mice expressing reduced levels of CD45 resulted in protection of mice after infection with the virulent Ames B. anthracis. Intermediate levels of CD45 expression were critical for the protection, as mice expressing normal levels of CD45 or disrupted CD45 phosphatase activity or no CD45 all succumbed to this pathogen. Mechanism-based studies suggest that the protection provided by reduced CD45 levels results from regulated immune cell homeostasis that may diminish the impact of apoptosis during the infection. To date, this is the first report demonstrating that reduced levels of host phosphatase CD45 modulate anthrax pathogenesis.Interactions between microbes and immune cells play a critical role in microbial pathogenesis. Many pathogenic organisms exploit the host immune machinery and subsequently modulate cell function, signaling, migration, and cytoskeleton rearrangement. Hence, identifying host cellular components with which microbes interact will allow for a more comprehensive understanding of microbial pathogenesis, define common strategies used by multiple pathogens, and elucidate unique tactics evolved by individual species to help establish infections or evade host innate responses. Another interesting aspect of infection is that diverse pathogens seem to target common cellular pathways (1, 2). Thus, identifying host targets exploited by multiple pathogens will be useful in the development of broad-spectrum host-oriented therapeutics and vaccines.Protein kinases and phosphatases regulate a range of cellular responses to external and internal stimuli, including cell proliferation, metabolism, and apoptosis. Aberrant kinase and/or phosphatase activities underlie many different types of pathological conditions from cancer to infectious diseases. Protein kinases have been extensively investigated as targets for drug discovery. In addition, phosphatases are now being recognized as important regulators of many biological processes. In particular, there is an increasing interest in protein-tyrosine phosphatases (PTPs)3 as drug targets (38) because immune cells express a remarkably high proportion of the 107 PTP genes in the human genome (9) and also due to the growing number of human diseases discovered to be associated with PTP abnormalities (911). The involvement of cellular and bacterial PTPs during intracellular microbial pathogenesis has been a topic of significant interest (2, 12, 13). The bacterial PTP YopH, secreted by Yersinia pestis, interferes with the host adhesion-regulated signaling pathway via dephosphorylation of selective tyrosine-phosphorylated proteins (14). Activation of host PTPs after infection with bacteria or their virulence factors has been demonstrated for a diverse group of microorganisms such as Mycobacterium tuberculosis and Leishmania donovani (13). Specific mechanistic models of how PTPs contribute to the development of infection and disease progression by highly lethal organisms still remain unclear.Bacillus anthracis, a Gram-positive spore-forming bacterium, is the etiologic agent of anthrax. The lethal toxin (LT) produced by B. anthracis can cleave host cell mitogen-activated protein kinase kinases (MAPKK), thereby affecting the immune response and the host ability to fight the infection (15, 16). Macrophages are the primary targets of anthrax LT. However, macrophages from only certain strains of mice are susceptible to LT-mediated cell death (17, 18). To date, there is no known direct relation between MAPKK cleavage and LT-induced macrophage cell death, as LT-resistant macrophages exhibit MAPKK cleavage (1921). This suggests that another cellular target(s) may play a role in anthrax pathogenesis.Previously, using a chemical genetic approach, we identified a class of Cdc25 inhibitors that protected macrophages from cell death induced by anthrax LT (22). Although Cdc25 was not the cellular target, induction of anti-apoptotic responses by the compounds via either the MAPK-dependent or -independent pathways was responsible for the protective phenotype.In the present study we investigated if the previously identified phosphatase inhibitors (22) and their analogs produced any phenotypic changes in the B. anthracis infection model. Two compounds that previously protected LT-treated macrophages (22) also protect B. anthracis-infected macrophages. Subsequent in vitro phosphatase profiling studies identified CD45, a previously unknown target of one of the small molecules, as the most sensitive enzyme to the inhibitor. We then investigated the effect of CD45 reduction in anthrax pathogenesis both in cells and in vivo by using antisense phosphorodiamidate morpholino oligomers and mice engineered to express reduced levels of CD45.  相似文献   
999.
UDP-galactopyranose mutase (UGM) catalyzes the isomerization of UDP-galactopyranose (UDP-Galp) into UDP-galactofuranose (UDP-Galf), an essential step of the mycobacterial cell wall biosynthesis. The first mechanistic assumption proposed in the literature was the involvement of 1,4-anhydrogalactose 1 as intermediate of this ring contraction. To confirm or rule out this hypothesis, we synthesized 1 and engaged it in reactions with UGM. The expected formations of UDP-Galf and UDP-Galp were never observed, thus showing that 1 is not, in fact, a low energy intermediate of this enzymatic contraction.  相似文献   
1000.
Intrinsic rates of population increase (r) were evaluated as a measure of population dynamics of four strains of Brachionus plicatilis and two strains of B. urceolaris from Iran in response to different salinities and feeding algae. Each rotifer strain was cultured at four salinities: 5, 20, 25 and 30‰ and fed with two microalgal species: Chlorella vulgaris and Nannochloropsis oculata. Salinity of 5‰ was critical for all the examined strains, at which r was at minimum and was different from the other salinities (P < 0.05). For B. plicatilis strains, the maximum r was observed in those fed on Chlorella at salinities of 10 and 30‰ (64 ± 0.01 day−1). While, in B. urceolaris, maximum r was for Nannochloropsis fed rotifers at salinity of 20‰ (0.69 ± 0.01 day−1). Maximum final population density (FD) was obtained for a strain of B. urceolaris fed on Nannochloropsis at 20‰ (329.3 ± 10.9 ind.mL−1). FD was relatively lower in B. plicatilis strains among all examined salinities. ANOVA showed the significant effect of salinity and rotifer strain, and algae × rotifer strain on both r and FD, and salinity × rotifer × algae on FD (P < 0.05). (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号