首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   530篇
  免费   22篇
  国内免费   3篇
  2023年   4篇
  2022年   18篇
  2021年   28篇
  2020年   8篇
  2019年   18篇
  2018年   13篇
  2017年   8篇
  2016年   18篇
  2015年   19篇
  2014年   27篇
  2013年   45篇
  2012年   48篇
  2011年   52篇
  2010年   30篇
  2009年   13篇
  2008年   18篇
  2007年   25篇
  2006年   17篇
  2005年   18篇
  2004年   7篇
  2003年   11篇
  2002年   6篇
  2001年   5篇
  2000年   8篇
  1999年   5篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   5篇
  1983年   7篇
  1982年   3篇
  1979年   3篇
  1978年   6篇
  1976年   2篇
  1975年   3篇
  1974年   6篇
  1973年   2篇
  1972年   3篇
  1971年   2篇
  1970年   4篇
  1969年   2篇
排序方式: 共有555条查询结果,搜索用时 15 毫秒
11.
A recent functional magnetic resonance imaging (fMRI) study by our group demonstrated that dynamic emotional faces are more accurately recognized and evoked more widespread patterns of hemodynamic brain responses than static emotional faces. Based on this experimental design, the present study aimed at investigating the spatio-temporal processing of static and dynamic emotional facial expressions in 19 healthy women by means of multi-channel electroencephalography (EEG), event-related potentials (ERP) and fMRI-constrained regional source analyses. ERP analysis showed an increased amplitude of the LPP (late posterior positivity) over centro-parietal regions for static facial expressions of disgust compared to neutral faces. In addition, the LPP was more widespread and temporally prolonged for dynamic compared to static faces of disgust and happiness. fMRI constrained source analysis on static emotional face stimuli indicated the spatio-temporal modulation of predominantly posterior regional brain activation related to the visual processing stream for both emotional valences when compared to the neutral condition in the fusiform gyrus. The spatio-temporal processing of dynamic stimuli yielded enhanced source activity for emotional compared to neutral conditions in temporal (e.g., fusiform gyrus), and frontal regions (e.g., ventromedial prefrontal cortex, medial and inferior frontal cortex) in early and again in later time windows. The present data support the view that dynamic facial displays trigger more information reflected in complex neural networks, in particular because of their changing features potentially triggering sustained activation related to a continuing evaluation of those faces. A combined fMRI and EEG approach thus provides an advanced insight to the spatio-temporal characteristics of emotional face processing, by also revealing additional neural generators, not identifiable by the only use of an fMRI approach.  相似文献   
12.
13.
Ocozocoautla de Espinosa virus (OCEV) is a novel, uncultured arenavirus. We found that the OCEV glycoprotein mediates entry into grivet and bat cells through transferrin receptor 1 (TfR1) binding but that OCEV glycoprotein precursor (GPC)-pseudotyped retroviruses poorly entered 53 human cancer cell lines. Interestingly, OCEV and Tacaribe virus could use bat, but not human, TfR1. Replacing three human TfR1 amino acids with their bat ortholog counterparts transformed human TfR1 into an efficient OCEV and Tacaribe virus receptor.  相似文献   
14.
The process of phagocytosis in multicellular organisms is required for homeostasis, clearance of foreign particles, and establishment of long-term immunity, yet the molecular determinants of uptake are not well characterized. Cdc42, a Rho guanosine triphosphatase, is thought to orchestrate critical actin remodeling events needed for internalization. In this paper, we show that Cdc42 controls exocytic events during phagosome formation. Cdc42 inactivation led to a selective defect in large particle phagocytosis as well as a general decrease in the rate of membrane flow to the cell surface. Supporting the connection between Cdc42 and exocytic function, we found that the overproduction of a regulator of exocytosis, Rab11, rescued the large particle uptake defect in the absence of Cdc42. Additionally, we demonstrated a temporal interaction between Cdc42 and the exocyst complex during large particle uptake. Furthermore, disruption of exocyst function through Exo70 depletion led to a defect in large particle internalization, thereby establishing a functional role for the exocyst complex during phagocytosis.  相似文献   
15.
Rice is staple food of half of mankind and paddy soils account for the largest anthropogenic wetlands on earth. Ample of research is being done to find cultivation methods under which the integrative greenhouse effect caused by emitted CH4 and N2O would be mitigated. Whereas most of the research focuses on quantifying such emissions, there is a lack of studies on the biogeochemistry of paddy soils. In order to deepen our mechanistic understanding of N2O and CH4 fluxes in rice paddies, we also determined NO3 ? and N2O concentrations as well as N2O isotope abundances and presence of O2 along soil profiles of paddies which underwent three different water managements during the rice growing season(s) in (2010 and) 2011 in Korea. Largest amounts of N2O (2 mmol m?2) and CH4 (14.5 mol m?2) degassed from the continuously flooded paddy, while paddies with less flooding showed 30–60 % less CH4 emissions and very low to negative N2O balances. In accordance, the global warming potential (GWP) was lowest for the Intermittent Irrigation paddy and highest for the Traditional Irrigation paddy. The N2O emissions could the best be explained (*P < 0.05) with the δ15N values and N2O concentrations in 40–50 cm soil depth, implying that major N2O production/consumption occurs there. No significant effect of NO3 ? on N2O production has been found. Our study gives insight into the soil of a rice paddy and reveals areas along the soil profile where N2O is being produced. Thereby it contributes to our understanding of subsoil processes of paddy soils.  相似文献   
16.
A focused library of hetero-trisubstituted purines was developed for improving the cell penetrating and biological efficacy of a series of anti-Stat3 protein inhibitors. From this SAR study, lead agent 22e was identified as being a promising inhibitor of MM tumour cells (IC50’s <5 μM). Surprisingly, biophysical and biochemical characterization proved that 22e was not a Stat3 inhibitor. Initial screening against the kinome, prompted by the purine scaffold’s history for targeting ATP binding pockets, suggests possible targeting of the JAK family kinases, as well for ABL1 (nonphosphorylated F317L) and AAK1.  相似文献   
17.
The response regulator/histidine kinase pair LiaRS of Bacillus subtilis, together with its membrane‐bound inhibitor protein LiaF, constitutes an envelope stress‐sensing module that is conserved in Firmicutes bacteria. LiaR positively autoregulates the expression of the liaIHliaGFSR operon from a strictly LiaR‐dependent promoter (PliaI). A comprehensive perturbation analysis revealed that the functionality of the LiaFSR system is very susceptible to alterations of its protein composition and amounts. A genetic analysis indicates a LiaF:LiaS:LiaR ratio of 18:4:1. An excess of LiaS over LiaR was subsequently verified by quantitative Western analysis. This stoichiometry, which is crucial to maintain a functional Lia system, differs from any other two‐component system studied to date, in which the response regulator is present in excess over the histidine kinase. Moreover, we demonstrate that LiaS is a bifunctional histidine kinase that acts as a phosphatase on LiaR in the absence of a suitable stimulus. An increased amount of LiaR – both in the presence and in the absence of LiaS – leads to a strong induction of PliaI activity due to phosphorylation of the response regulator by acetyl phosphate. Our data demonstrate that LiaRS, in contrast to other two‐component systems, is non‐robust with regard to perturbations of its stoichiometry.  相似文献   
18.
19.
Activated protein kinase R (PKR) plays a vital role in antiviral defense primarily by inhibiting protein synthesis and augmenting interferon responses. Many viral proteins have adopted unique strategies to counteract the deleterious effects of PKR. The NSs (Non-structural s) protein which is encoded by Rift Valley fever virus (RVFV) promotes early PKR proteasomal degradation through a previously undefined mechanism. In this study, we demonstrate that NSs carries out this activity by assembling the SCF (SKP1-CUL1-F-box)FBXW11 E3 ligase. NSs binds to the F-box protein, FBXW11, via the six amino acid sequence DDGFVE called the degron sequence and recruits PKR through an alternate binding site to the SCFFBXW11 E3 ligase. We further show that disrupting the assembly of the SCFFBXW11-NSs E3 ligase with MLN4924 (a small molecule inhibitor of SCF E3 ligase activity) or NSs degron viral mutants or siRNA knockdown of FBXW11 can block PKR degradation. Surprisingly, under these conditions when PKR degradation was blocked, NSs was essential and sufficient to activate PKR causing potent inhibition of RVFV infection by suppressing viral protein synthesis. These antiviral effects were antagonized by the loss of PKR expression or with a NSs deleted mutant virus. Therefore, early PKR activation by disassembly of SCFFBXW11-NSs E3 ligase is sufficient to inhibit RVFV infection. Furthermore, FBXW11 and BTRC are the two homologues of the βTrCP (Beta-transducin repeat containing protein) gene that were previously described to be functionally redundant. However, in RVFV infection, among the two homologues of βTrCP, FBXW11 plays a dominant role in PKR degradation and is the limiting factor in the assembly of the SCFFBXW11 complex. Thus, FBXW11 serves as a master regulator of RVFV infection by promoting PKR degradation. Overall these findings provide new insights into NSs regulation of PKR activity and offer potential opportunities for therapeutic intervention of RVFV infection.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号