首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   522篇
  免费   22篇
  国内免费   3篇
  547篇
  2024年   4篇
  2023年   6篇
  2022年   23篇
  2021年   28篇
  2020年   9篇
  2019年   19篇
  2018年   15篇
  2017年   8篇
  2016年   22篇
  2015年   21篇
  2014年   28篇
  2013年   45篇
  2012年   49篇
  2011年   51篇
  2010年   28篇
  2009年   18篇
  2008年   18篇
  2007年   27篇
  2006年   19篇
  2005年   20篇
  2004年   5篇
  2003年   10篇
  2002年   7篇
  2001年   3篇
  2000年   5篇
  1999年   5篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1984年   2篇
  1983年   7篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1974年   5篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   3篇
  1969年   1篇
排序方式: 共有547条查询结果,搜索用时 7 毫秒
21.
The membrane-anchored FtsH protease is essential in Escherichia coli as it adjusts the cellular amount of LpxC, the key enzyme in lipopolysaccharide (LPS) biosynthesis. Both accumulation and depletion of LpxC are toxic to E. coli. By continuous proteolysis of LpxC, FtsH maintains a low concentration of LpxC and, hence, the proper equilibrium between LPS and phospholipids. The C terminus of LpxC is required for turnover. By adding this tail to glutathione-S-transferase (GST) we show that it is necessary but not sufficient for FtsH-mediated degradation. A detailed mutational analysis revealed six non-polar residues in the C terminus of LpxC that are critical for degradation. Alteration of the C-terminal AVLA motif towards the SsrA-like sequence ALAA directed LpxC to other cellular proteases reinforcing the importance of the C-terminal tail for targeting to FtsH. Short C-terminal truncations stabilized LpxC. Most mutations in the C terminus of LpxC left its enzymatic activity intact as was shown by growth assays, microscopy and 2-keto-3-deoxyoctonate (KDO) determination. The critical length of the turnover element was defined by internal deletions. A C-terminal tail of about 20 amino acids length is required for proteolysis of LpxC by FtsH.  相似文献   
22.
Professional phagocytic cells such as macrophages are a central part of innate immune defence. They ingest microorganisms into membrane‐bound compartments (phagosomes), which acidify and eventually fuse with lysosomes, exposing their contents to a microbicidal environment. Gram‐positive Rhodococcus equi can cause pneumonia in young foals and in immunocompromised humans. The possession of a virulence plasmid allows them to subvert host defence mechanisms and to multiply in macrophages. Here, we show that the plasmid‐encoded and secreted virulence‐associated protein A (VapA) participates in exclusion of the proton‐pumping vacuolar‐ATPase complex from phagosomes and causes membrane permeabilisation, thus contributing to a pH‐neutral phagosome lumen. Using fluorescence and electron microscopy, we show that VapA is also transferred from phagosomes to lysosomes where it permeabilises the limiting membranes for small ions such as protons. This permeabilisation process is different from that of known membrane pore formers as revealed by experiments with artificial lipid bilayers. We demonstrate that, at 24 hr of infection, virulent Requi is contained in a vacuole, which is enriched in lysosome material, yet possesses a pH of 7.2 whereas phagosomes containing a vapA deletion mutant have a pH of 5.8 and those with virulence plasmid‐less sister strains have a pH of 5.2. Experimentally neutralising the macrophage endocytic system allows avirulent Requi to multiply. This observation is mirrored in the fact that virulent and avirulent Requi multiply well in extracts of purified lysosomes at pH 7.2 but not at pH 5.1. Together these data indicate that the major function of VapA is to generate a pH‐neutral and hence growth‐promoting intracellular niche. VapA represents a new type of Gram‐positive virulence factor by trafficking from one subcellular compartment to another, affecting membrane permeability, excluding proton‐pumping ATPase, and consequently disarming host defences.  相似文献   
23.
The vascular endothelial growth factors VEGFA and VEGFC are crucial regulators of vascular development. They exert their effects by dimerization and activation of the cognate receptors VEGFR2 and VEGFR3. Here, we have used in situ proximity ligation to detect receptor complexes in intact endothelial cells. We show that both VEGFA and VEGFC potently induce formation of VEGFR2/‐3 heterodimers. Receptor heterodimers were found in both developing blood vessels and immature lymphatic structures in embryoid bodies. We present evidence that heterodimers frequently localize to tip cell filopodia. Interestingly, in the presence of VEGFC, heterodimers were enriched in the leading tip cells as compared with trailing stalk cells of growing sprouts. Neutralization of VEGFR3 to prevent heterodimer formation in response to VEGFA decreased the extent of angiogenic sprouting. We conclude that VEGFR2/‐3 heterodimers on angiogenic sprouts induced by VEGFA or VEGFC may serve to positively regulate angiogenic sprouting.  相似文献   
24.
25.
Gonzalez-Ceron, L., Rodriguez, M. H., Wirtz, R. A., Sina, B. J., Palomeque, O. L., Nettel, J. A., and Tsutsumi, V. 1998.Plasmodium vivax:A monoclonal antibody recognizes a circumsporozoite protein precursor on the sporozoite surface.Experimental Parasitology90, 203–211. The major surface circumsporozoite (CS) proteins are known to play a role in malaria sporozoite development and invasion of invertebrate and vertebrate host cells.Plasmodium vivaxCS protein processing during mosquito midgut oocyst and salivary gland sporozoite development was studied using monoclonal antibodies which recognize different CS protein epitopes. Monoclonal antibodies which react with the CS amino acid repeat sequences by ELISA recognized a 50-kDa precursor protein in immature oocyst and additional 47- and 42-kDa proteins in older oocysts. A 42-kDa CS protein was detected after initial sporozoite invasion of mosquito salivary glands and an additional 50-kDa precursor CS protein observed later in infected salivary glands. These data confirm previous results with otherPlasmodiumspecies, in which more CS protein precursors were detected in oocysts than in salivary gland sporozoites. A monoclonal antibody (PvPCS) was characterized which reacts with an epitope found only in the 50-kDa precursor CS protein. PvPCS reacted with allP. vivaxsporozoite strains tested by indirect immunofluorescent assay, homogeneously staining the sporozoite periphery with much lower intensity than that produced by anti-CS repeat antibodies. Immunoelectron microscopy using PvPCS showed that the CS protein precursor was associated with peripheral cytoplasmic vacuoles and membranes of sporoblast and budding sporozoites in development oocysts. In salivary gland sporozoites, the CS protein precursor was primarily associated with micronemes and sporozoite membranes. Our results suggest that the 50-kDa CS protein precursor is synthesized intracellularly and secreted on the membrane surface, where it is proteolytically processed to form the 42-kDa mature CS protein. These data indicate that differences in CS protein processing in oocyst and salivary gland sporozoites development may occur.  相似文献   
26.
27.
The temperature-sensitive mutation cc1 blocks a number of cell cycle processes in Paramecium including macronuclear DNA synthesis, oral morphogenesis, and the later stages of micronuclear mitosis. Oral morphogenesis and micronuclear mitosis also occur in the sexual pathway. This study shows that cc1 cells can proceed through conjugation or autogamy under restrictive conditions; neither stomatogenesis nor micronuclear mitosis is blocked. Fertilization and macronuclear determination occur normally, but DNA synthesis in macronuclear anlagen is blocked. Therefore, this mutation discriminates between oral replacement during meiosis and vegetative prefission stomatogenesis, and between mitotic spindle elongation during the pregamic and postzygotic divisions and spindle elongation during the vegetative cell cycle. These results point to a fundamental regulatory difference between morphogenesis in the vegetative and sexual pathways. © 1994 Wiley-Liss, Inc.  相似文献   
28.
Vascular endothelial growth factor (VEGF) has long been recognized as a hypotensive mediator. Little is known regarding the contribution of polymorphisms in VEGF gene to essential hypertension (EH), however. We aimed to investigate the association between +405 VEGF C/G single nucleotide polymorphism (SNP) and occurrence of EH in a sample of patients with diabetes. A study population of 474 subjects with diabetes of which 45.6% (216) had EH was enrolled in this study. Interviews and physical examinations were performed in a clinical setting. Subjects were matched in baseline anthropometric and biochemical characteristics except for total cholesterol. Genotyping of +405 VEGF C/G (rs2010963) SNP was carried out using polymerase chain reaction–restriction fragment length polymorphism. The allelic distribution of the sample did not violate Hardy–Weinberg equilibrium. Subjects with EH had a higher frequency of G allele (P = 0.005). Additionally, those with EH had a significantly higher frequency of GG genotype (P = 0.015). In multivariate logistic regression models controlling for possible confounders, having GG against CC genotype was associated with an odds ratio of 2.51 (95% CI: 1.44–4.38; P = 0.001). Moreover, presence of each G allele was linked to a 1.58-fold increase in risk of having EH (95% CI: 1.200–2.086; P = 0.001). In conclusion, +405 VEGF C/G SNP is associated with EH in patients with diabetes, suggesting presence of G allele and GG or CG genotype confer susceptibility towards EH.  相似文献   
29.
The rate, polarity, and symmetry of the flow of the plant hormone auxin are determined by the polar cellular localization of PIN-FORMED (PIN) auxin efflux carriers. Flavonoids, a class of secondary plant metabolites, have been suspected to modulate auxin transport and tropic responses. Nevertheless, the identity of specific flavonoid compounds involved and their molecular function and targets in vivo are essentially unknown. Here we show that the root elongation zone of agravitropic pin2/eir1/wav6/agr1 has an altered pattern and amount of flavonol glycosides. Application of nanomolar concentrations of flavonols to pin2 roots is sufficient to partially restore root gravitropism. By employing a quantitative cell biological approach, we demonstrate that flavonoids partially restore the formation of lateral auxin gradients in the absence of PIN2. Chemical complementation by flavonoids correlates with an asymmetric distribution of the PIN1 protein. pin2 complementation probably does not result from inhibition of auxin efflux, as supply of the auxin transport inhibitor N-1-naphthylphthalamic acid failed to restore pin2 gravitropism. We propose that flavonoids promote asymmetric PIN shifts during gravity stimulation, thus redirecting basipetal auxin streams necessary for root bending.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号