首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   477篇
  免费   21篇
  国内免费   3篇
  2023年   5篇
  2022年   19篇
  2021年   27篇
  2020年   8篇
  2019年   19篇
  2018年   13篇
  2017年   8篇
  2016年   18篇
  2015年   19篇
  2014年   26篇
  2013年   40篇
  2012年   46篇
  2011年   50篇
  2010年   27篇
  2009年   13篇
  2008年   18篇
  2007年   23篇
  2006年   16篇
  2005年   17篇
  2004年   5篇
  2003年   9篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   5篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   7篇
  1982年   2篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1974年   5篇
  1973年   1篇
  1972年   3篇
  1971年   2篇
  1970年   3篇
  1969年   2篇
排序方式: 共有501条查询结果,搜索用时 15 毫秒
111.
Journal of Molecular Histology - Multiple sclerosis (MS) has no absolute treatment, and researchers are still exploring to introduce promising therapy for MS. Transcranial direct current...  相似文献   
112.
Biomechanics and Modeling in Mechanobiology - Targeted drug delivery (TDD) to abdominal aortic aneurysm (AAA) using a controlled and efficient approach has recently been a significant challenge. In...  相似文献   
113.
Extracellular NAD and ATP: Partners in immune cell modulation   总被引:3,自引:2,他引:1  
Extracellular NAD and ATP exert multiple, partially overlapping effects on immune cells. Catabolism of both nucleotides by extracellular enzymes keeps extracellular concentrations low under steady-state conditions and generates metabolites that are themselves signal transducers. ATP and its metabolites signal through purinergic P2 and P1 receptors, whereas extracellular NAD exerts its effects by serving as a substrate for ADP-ribosyltransferases (ARTs) and NAD glycohydrolases/ADPR cyclases like CD38 and CD157. Both nucleotides activate the P2X7 purinoceptor, although by different mechanisms and with different characteristics. While ATP activates P2X7 directly as a soluble ligand, activation via NAD occurs by ART-dependent ADP-ribosylation of cell surface proteins, providing an immobilised ligand. P2X7 activation by either route leads to phosphatidylserine exposure, shedding of CD62L, and ultimately to cell death. Activation by ATP requires high micromolar concentrations of nucleotide and is readily reversible, whereas NAD-dependent stimulation begins at low micromolar concentrations and is more stable. Under conditions of cell stress or inflammation, ATP and NAD are released into the extracellular space from intracellular stores by lytic and non-lytic mechanisms, and may serve as ‘danger signals–to alert the immune response to tissue damage. Since ART expression is limited to naïve/resting T cells, P2X7-mediated NAD-induced cell death (NICD) specifically targets this cell population. In inflamed tissue, NICD may inhibit bystander activation of unprimed T cells, reducing the risk of autoimmunity. In draining lymph nodes, NICD may eliminate regulatory T cells or provide space for the preferential expansion of primed cells, and thus help to augment an immune response.  相似文献   
114.
We characterized the dynamics of proteorhodopsin (PR), solubilized in diC7PC, a detergent micelle, by liquid-state NMR spectroscopy at T?=?323?K. Insights into the dynamics of PR at different time scales could be obtained and dynamic hot spots could be identified at distinct, functionally relevant regions of the protein, including the BC loop, the EF loop, the N-terminal part of helix F and the C-terminal part of helix G. We further characterize the dependence of the photocycle on different detergents (n-Dodecyl ??-D-maltoside DDM; 1,2-diheptanoyl-sn-glycero-3-phosphocholine diC7PC) by ultrafast time-resolved UV/VIS spectroscopy. While the photocycle intermediates of PR in diC7PC and DDM exhibit highly similar spectral characteristics, significant changes in the population of these intermediates are observed. In-situ NMR experiments have been applied to characterize structural changes during the photocycle. Light-induced chemical shift changes detected during the photocycle in diC7PC are very small, in line with the changes in the population of intermediates in the photocycle of proteorhodopsin in diC7PC, where the late O-intermediate populated in DDM is missing and the population is shifted towards an equilibrium of intermediates states (M, N, O) without accumulation of a single populated intermediate.  相似文献   
115.
The GP(1,2) envelope glycoproteins (GP) of filoviruses (marburg- and ebolaviruses) mediate cell-surface attachment, membrane fusion, and entry into permissive cells. Here we show that a 151-amino acid fragment of the Lake Victoria marburgvirus GP1 subunit bound filovirus-permissive cell lines more efficiently than full-length GP1. An homologous 148-amino acid fragment of the Zaire ebolavirus GP1 subunit similarly bound the same cell lines more efficiently than a series of longer GP1 truncation variants. Neither the marburgvirus GP1 fragment nor that of ebolavirus bound a nonpermissive lymphocyte cell line. Both fragments specifically inhibited replication of infectious Zaire ebolavirus, as well as entry of retroviruses pseudotyped with either Lake Victoria marburgvirus or Zaire ebolavirus GP(1,2). These studies identify the receptor-binding domains of both viruses, indicate that these viruses utilize a common receptor, and suggest that a single small molecule or vaccine can be developed to inhibit infection of all filoviruses.  相似文献   
116.
Rho family GTPases are important regulators of the actin cytoskeleton. Activation of these proteins can be promoted by guanine nucleotide exchange factors containing Dbl and Pleckstrin homology domains resulting in membrane insertion of a Rho family member, whereas the inactive GDP-bound form is sequestered primarily in the cytoplasm, bound to the guanosine dissociation inhibitor RhoGDI. Dominant interfering variants of Rac1, but not Cdc42, inhibit beta1 integrin-promoted uptake of Yersinia pseudotuberculosis. Unexpectedly, we found that the Rac1(W56F) guanine nucleotide exchange factors specificity switch mutant blocked invasin-promoted uptake as well as Cdc42-dependent uptake of enteropathogenic Escherichia coli. Fluorescence resonance energy transfer experiments demonstrated that Rac1(W56F) retained the ability to be loaded with GTP, bind a downstream effector, and interact with RhoGDI. Mutational analyses of intragenic suppressors and coexpression studies demonstrated that binding of the Rac1(W56F) mutant to RhoGDI appeared to play a role in the inhibition of uptake. As RhoGDI inhibits RhoA, overactivation of RhoA may account for the uptake interference caused by Rac1(W56F). Consistent with this model, a dominant interfering form of RhoA restored significant uptake in the presence of the Rac1(W56F) mutant but had no effect on another interfering Rac1 form. Furthermore, the cellular GTP-RhoA level was elevated by the presence of Rac1(W56F) mutant protein. These data are consistent with the proposition that Rac1(W56F) blocks invasin-promoted uptake by preventing RhoGDI from inactivating RhoA. We conclude that RhoGDI allows cross-talk between Rho family members that promote potentially antagonistic processes, and disruption of this cross-talk can interfere with invasin-promoted uptake.  相似文献   
117.
Perbenzylated methyl pentofuranosides were submitted to the action of three alkylalanes and regioselective debenzylation at O-2 of the four pentoses was observed when choosing the right match between anomeric configuration and aluminium reagent. Diisobutylalane (DIBAL-H) allowed an easy access to reduced open-chain compounds, whereas trimethylalane (TMAL) stereoselectively produced methylated open chain derivatives.  相似文献   
118.
The lack of a mouse model has hampered an understanding of the pathogenesis and immunity of Marburg hemorrhagic fever (MHF), the disease caused by marburgvirus (MARV), and has created a bottleneck in the development of antiviral therapeutics. Primary isolates of the filoviruses, i.e., ebolavirus (EBOV) and MARV, are not lethal to immunocompetent adult mice. Previously, pathological, virologic, and immunologic evaluation of a mouse-adapted EBOV, developed by sequential passages in suckling mice, identified many similarities between this model and EBOV infections in nonhuman primates. We recently demonstrated that serially passaging virus recovered from the liver homogenates of MARV-infected immunodeficient (SCID) mice was highly successful in reducing the time to death in these mice from 50 to 70 days to 7 to 10 days after challenge with the isolate MARV-Ci67, -Musoke, or -Ravn. In this study, we extended our findings to show that further sequential passages of MARV-Ravn in immunocompetent mice caused the MARV to kill BALB/c mice. Serial sampling studies to characterize the pathology of mouse-adapted MARV-Ravn revealed that this model is similar to the guinea pig and nonhuman primate MHF models. Infection of BALB/c mice with mouse-adapted MARV-Ravn caused uncontrolled viremia and high viral titers in the liver, spleen, lymph node, and other organs; profound lymphopenia; destruction of lymphocytes within the spleen and lymph nodes; and marked liver damage and thrombocytopenia. Sequencing the mouse-adapted MARV-Ravn strain revealed differences in 16 predicted amino acids from the progenitor virus, although the exact changes required for adaptation are unclear at this time. This mouse-adapted MARV strain can now be used to develop and evaluate novel vaccines and therapeutics and may also help to provide a better understanding of the virulence factors associated with MARV.The filoviruses, Marburgvirus and Ebolavirus (MARV and EBOV), cause severe hemorrhagic fevers in humans and nonhuman primates (27). The incubation time is estimated to be 3 to 21 days, with human case fatality rates reaching 90% in some outbreaks. Filoviral hemorrhagic fevers are characterized by a nonspecific viral prodrome in the early stage of infection, including fever, headaches, and myalgia (27). This is followed by a hemorrhagic phase that can include development of a maculopapular rash, petechiae, and bleeding from the gums, intestines, and other mucosal surfaces. Death usually occurs within a week of initial symptoms and is thought to be due to uncontrolled viral replication, hypotension-induced shock caused by increased vascular permeability, and multiorgan failure, likely caused by disseminated intravascular coagulation and extensive necroses in the liver, spleen, intestine, and many other major organ systems (27).Human-derived MARVs (isolates Angola, Musoke, Ravn, and Ci67) do not kill immunocompetent adult mice (23). Furthermore, there are no published reports of any lethal mouse-adapted MARV. The current mouse-adapted EBOV, strain Zaire (ZEBOV), was developed by performing nine sequential passages of ZEBOV 1976 virus in suckling mice, followed by two sequential plaque picks. The resulting virus was uniformly lethal to mice inoculated intraperitoneally (i.p.). Pathological evaluation of infected mice identified many similarities and only a few differences between this model (7, 22) and infections in nonhuman primates (21).In a previous study, we took a slightly different approach to mouse adaptation of MARV and found that serially passaging virus recovered from the liver homogenates of MARV-Ravn-infected adult mice with severe combined immunodeficiency (SCID mice) resulted in the generation of SCID-adapted MARV-Ravn (scid-MARV) that rapidly killed SCID mice but did not kill adult immunocompetent mice (51). In this study, we used scid-MARV as starting material for the first round of infection of adult immunocompetent BALB/c mice and serially passaged virus recovered from the liver homogenates of the BALB/c mice. MARV-Ravn was chosen over SCID-adapted MARV-Ci67 or -Musoke because it adapted more rapidly to SCID mice than the other isolates did. This produced a mouse-adapted MARV-Ravn strain (ma-MARV) that could kill adult BALB/c mice. Serial sampling studies to characterize the pathogenesis of ma-MARV revealed that this model was very similar to the guinea pig and nonhuman primate Marburg hemorrhagic fever (MHF) models, including rapid viremia, induction of D-dimers (fibrin degradation products), thrombocytopenia, profound loss of circulating and tissue lymphocytes, and marked liver damage. Additionally, we compared the immunological responses of mice after infection with either nonadapted wild-type MARV-Ravn (wt-MARV) or ma-MARV. This mouse model of MARV infection not only should advance our understanding of MARV pathogenesis and immunity but also may play a critical role in discovery of therapeutics for MARV infection.  相似文献   
119.
Stringently controlled conditional expressing systems are crucial for the functional characterization of genes. Currently, screening of multiple clones to identify the tightly controlled ones is necessary but time-consuming. Here, we describe a system fusing Tet (tetracycline)-inducible elements, BAC (bacterial artificial chromosome) and Gateway technology together to allow tight control of gene expression in BAC-transfected eukaryotic bulk cell cultures. Recombinase cloning into the shuttle vector and the BAC facilitates vector construction. An EGFP (enhanced green fluorescent protein) allows FACS (fluorescence activated cell sorting) and the BAC technology ensures tight control of gene expression that is independent of the integrating site. In the current first application, our gene of interest encodes a β-catenin-ERα fusion protein. Tested by luciferase assay and western blotting, in HTB56 lung cancer cells the final BAC E11-IGR-β-catenin-ERα vector demonstrated sensitive inducibility by Tet or Dox (doxycycline) in a dose-dependent manner with low background, and the EGFP was an effective selection marker by FACS in bulk culture HTB56 and myeloblastic 32D cells. This is a highly efficient tool for the rapid generation of stringently controlled Tet-inducible systems in cell lines.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号