首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   463篇
  免费   20篇
  国内免费   3篇
  2023年   4篇
  2022年   16篇
  2021年   27篇
  2020年   8篇
  2019年   18篇
  2018年   13篇
  2017年   8篇
  2016年   18篇
  2015年   19篇
  2014年   26篇
  2013年   40篇
  2012年   46篇
  2011年   48篇
  2010年   26篇
  2009年   13篇
  2008年   18篇
  2007年   23篇
  2006年   16篇
  2005年   17篇
  2004年   4篇
  2003年   9篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   5篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1984年   2篇
  1983年   7篇
  1982年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   5篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   3篇
  1969年   1篇
排序方式: 共有486条查询结果,搜索用时 15 毫秒
411.
Constant current electrolyses of the glycosyl donors phenyl and ethyl 2,3,4,6-tetra-O-benzyl-1-thio-β-d-glycopyranoside in dry acetonitrile in the presence of various primary and secondary sugar alcohols, performed in an undivided cell, gave β-linked disaccharide derivatives selectively in good yields. Phenyl 2,3,4,6-tetra-O-benzoyl-1-thio-β-d-glycopyranoside gave the β-glucosides exclusively in good to moderate yields.  相似文献   
412.
The structural features required for xyloglucan oligosaccharides to inhibit 2,4-dichlorophenoxyacetic acid-stimulated elongation of pea stem segments have been investigated. A nonasaccharide (XG9) containing one fucosyl-galactosyl side chain and an undecasaccharide (XG11) containing two fucosyl-galactosyl side chains were purified from endo-β-1,4-glucanase-treated xyloglucan, which had been isolated from soluble extracellular polysaccharides of suspension-cultured sycamore (Acerpseudoplatanus) cells and tested in the pea stem bioassay. A novel octasaccharide (XG8′) was prepared by treatment of XG9 with a xyloglucan oligosaccharide-specific α-xylosidase from pea seedlings. XG8′ was characterized and tested for its ability to inhibit auxin-induced growth. All three oligosaccharides, at a concentration of 0.1 microgram per milliliter, inhibited 2,4-dichlorophenoxyacetic acid-stimulated growth of pea stem segments. XG11 inhibited the growth to a greater extent than did XG9. Chemically synthesized nona- and pentasaccharides (XG9, XG5) inhibited 2,4-dichlorophenoxyacetic acid-stimulated elongation of pea stems to the same extent as the same oligosaccharides isolated from xyloglucan. A chemically synthesized structurally related heptasaccharide that lacked a fucosyl-galactosyl side chain did not, unlike the identical heptasaccharide isolated from xyloglucan, significantly inhibit 2,4-dichlorophenoxyacetic acid-stimulated growth.  相似文献   
413.
The interval between commitment to division and fission in synchronous cell samples is a constant fraction of the cell cycle (0.2) in cell cycles up to 6.5 h in duration. In longer cell cycles this interval has a fixed duration of about 80 min. The point of commitment to division is associated with the six-rowed anlage stage of oral primordium development (stage V). At this stage cells carrying the cc1 mutation are not blocked by transfer to restrictive conditions but rather proceed to division. Stage V is also the stabilization point for oral anlagen. When shifted to restrictive conditions prior to this stage, development is arrested and resorption of anlagen is initiated. The cc1 mutation also blocks contractile vacuole duplication and migration under restrictive conditions. The cc1 gene function is required continuously prior to the transition point. The timing of morphogenetic stages in asynchronous cells is roughly similar to that in synchronous cells. There are, however, significant differences in timing as estimated by the two experimental procedures.  相似文献   
414.
2-Acetamido-2- deoxy-6-O-, -xylopyranosyl-O-D-glucopyranose has been synthesized in crystalline form by condensation of 2,3,4-tri-O-acetyl-α-D-xylopyranosyl chloride (1) with benzyl 2-acetamido-3,4-di-O-acetyl-2-deoxy-β-D-glucopyranoside (2), followed by O-deacetylation and catalytic hydrogenation. Condensation of 2 with 2,3,4-tri-O-chlorosulfonyl-β-D-xylopyranosyl chloride, followed by dechlorosulfonylation and acetylation, gave benzyl 2-acetamido-3,4-di-O-acetyl-2-deoxy-6-O-(2,3,4-tri-O-acetyl-α-D-xylopyranosyl)β-D-glucopyranoside in crystalline form. O-Deacetylation, followed by catalytic hydrogenation, gave 2-acetamido-2-deoxy-6-O-α-D-xylopyranosyl-α-D-glucopyranose in crystalline form.  相似文献   
415.
416.
417.
It has been proposed that oligosaccharides corresponding to the so-called regular region of heparin/heparan sulfate (HS) bind to fibroblast growth factor-2 (FGF-2). In order to explore the molecular basis of FGF/HS interaction, we describe here the chemical synthesis of a tetra and a hexasaccharide, prepared as methyl glycosides, corresponding to the regular sequence of heparin. The strategy relies on the efficient preparation of three building blocks: a seeding block, an elongating block and a capping block. The hexasaccharide inhibited the binding of FGF-2 on its receptor on human aorta vascular smooth muscle cells with an IC50 value (16+/-1.2 microg/mL) close to that of standard heparin (14.8+/-0.5 microg/mL) whereas the tetrasaccharide was much less potent (IC50 = 127+/-10.5 microg/mL). The hexasaccharide and heparin, inhibited in a dose-dependent manner FGF-2 (30 nM) induced proliferation (IC50 = 23.7+/-1.6 and 30.1+/-1.3 microg/mL, respectively). Under the same experimental conditions, the tetrasaccharide only slightly inhibited the mitogenic effect of FGF-2 (IC50 > 100 microg/mL).  相似文献   
418.
It has been suggested that the FGF-2 binding site on heparan sulfate chains is a trisulfated pentasaccharide containing three hexuronic acid units. The configuration at C-5 of two of them being undetermined, we have synthesized the four possible pentasaccharides, and have evaluated their FGF-2 binding affinity through in vitro biological assays. The pentasaccharide containing L-iduronic acid as the sole hexuronic acid showed higher affinity for FGF-2 than the other pentasaccharides, where one hexuronic acid unit at least is D-glucuronic acid.  相似文献   
419.
Ebola virus (EBOV) causes highly lethal hemorrhagic fever that leads to death in up to 90% of infected humans. Like many other infections, EBOV induces massive lymphocyte apoptosis, which is thought to prevent the development of a functional adaptive immune response. In a lethal mouse model of EBOV infection, we show that there is an increase in expression of the activation/maturation marker CD44 in CD4(+) and CD8(+) T cells late in infection, preceding a dramatic rebound of lymphocyte numbers in the blood. Furthermore, we observed both lymphoblasts and apoptotic lymphocytes in spleen late in infection, suggesting that there is lymphocyte activation despite substantial bystander apoptosis. To test whether these activated lymphocytes were functional, we performed adoptive transfer studies. Whole splenocytes from moribund day 7 EBOV-infected animals protected naive animals from EBOV, but not Marburgvirus, challenge. In addition, we observed EBOV-specific CD8(+) T cell IFN-gamma responses in moribund day 7 EBOV-infected mice, and adoptive transfer of CD8(+) T cells alone from day 7 mice could confer protection to EBOV-challenged naive mice. Furthermore, CD8(+) cells from day 7, but not day 0, mice proliferated after transfer to infected recipients. Therefore, despite significant lymphocyte apoptosis, a functional and specific, albeit insufficient, adaptive immune response is made in lethal EBOV infection and is protective upon transfer to naive infected recipients. These findings should cause a change in the current view of the 'impaired' immune response to EBOV challenge and may help spark new therapeutic strategies to control lethal filovirus disease.  相似文献   
420.
Botulinum neurotoxin serotype A is the most lethal of all known toxins. Here, we report the crystal structure, along with SAR data, of the zinc metalloprotease domain of BoNT/A bound to a potent peptidomimetic inhibitor (K(i)=41 nM) that resembles the local sequence of the SNAP-25 substrate. Surprisingly, the inhibitor adopts a helical conformation around the cleavage site, in contrast to the extended conformation of the native substrate. The backbone of the inhibitor's P1 residue displaces the putative catalytic water molecule and concomitantly interacts with the "proton shuttle" E224. This mechanism of inhibition is aided by residue contacts in the conserved S1' pocket of the substrate binding cleft and by the induction of new hydrophobic pockets, which are not present in the apo form, especially for the P2' residue of the inhibitor. Our inhibitor is specific for BoNT/A as it does not inhibit other BoNT serotypes or thermolysin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号