首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   466篇
  免费   20篇
  国内免费   3篇
  489篇
  2023年   4篇
  2022年   19篇
  2021年   27篇
  2020年   8篇
  2019年   18篇
  2018年   13篇
  2017年   8篇
  2016年   18篇
  2015年   19篇
  2014年   26篇
  2013年   40篇
  2012年   46篇
  2011年   48篇
  2010年   26篇
  2009年   13篇
  2008年   18篇
  2007年   23篇
  2006年   16篇
  2005年   17篇
  2004年   4篇
  2003年   9篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   5篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1984年   2篇
  1983年   7篇
  1982年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   5篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   3篇
  1969年   1篇
排序方式: 共有489条查询结果,搜索用时 15 毫秒
81.
Filoviruses are hemorrhagic fever viruses endemic to parts of Africa and the Philippines. Infection carries with it a mortality rate of up to 90% and currently there are no effective vaccines or therapeutics available to combat infection. However, the filovirus virus-like particles (VLP), which are currently under development, have been shown to be a promising vaccine candidate. They provide protection from infection in the mouse, guinea pig, and nonhuman primate models of infection, eliciting high anti-glycoprotein antibody titers and T cell responses to viral proteins. In this review, we will highlight the development of the filovirus VLP and describe the current understanding of VLP immunogenicity and correlates of protection.  相似文献   
82.
Despite the essential function of lipopolysaccharides (LPS) in Gram-negative bacteria, it is largely unknown how the exact amount of this molecule in the outer membrane is controlled. The first committed step in LPS biosynthesis is catalyzed by the LpxC enzyme. In Escherichia coli, the cellular concentration of LpxC is adjusted by the only essential protease in this organism, the membrane-anchored metalloprotease FtsH. Turnover of E. coli LpxC requires a length- and sequence-specific C-terminal degradation signal. LpxC proteins from Salmonella, Yersinia, and Vibrio species carry similar C-terminal ends and, like the E. coli enzyme, were degraded by FtsH. Although LpxC proteins are highly conserved in Gram-negative bacteria, there are striking differences in their C termini. The Aquifex aeolicus enzyme, which is devoid of the C-terminal extension, was stable in E. coli, whereas LpxC from the alphaproteobacteria Agrobacterium tumefaciens and Rhodobacter capsulatus was degraded by the Lon protease. Proteolysis of the A. tumefaciens protein required the C-terminal end of LpxC. High stability of Pseudomonas aeruginosa LpxC in E. coli and P. aeruginosa suggested that Pseudomonas uses a proteolysis-independent strategy to control its LPS content. The differences in LpxC turnover along with previously reported differences in susceptibility against antimicrobial compounds have important implications for the potential of LpxC as a drug target.  相似文献   
83.
Three methods were examined to cultivate bacteria associated with the marine sponge Haliclona (gellius) sp.: agar plate cultures, liquid cultures, and floating filter cultures. A variety of oligotrophic media were employed, including media with aqueous and organic sponge extracts, bacterial signal molecules, and siderophores. More than 3,900 isolates were analyzed, and 205 operational taxonomic units (OTUs) were identified. Media containing low concentrations of mucin or a mixture of peptone and starch were most successful for the isolation of diversity, while the commonly used marine broth did not result in a high diversity among isolates. The addition of antibiotics generally led to a reduced diversity on plates but yielded different bacteria than other media. In addition, diversity patterns of isolates from agar plates, liquid cultures, and floating filters were significantly different. Almost 89% of all isolates were Alphaproteobacteria; however, members of phyla that are less commonly encountered in cultivation studies, such as Planctomycetes, Verrucomicrobia, and Deltaproteobacteria, were isolated as well. The sponge-associated bacteria were categorized into three different groups. The first group represented OTUs that were also obtained in a clone library from previously analyzed sponge tissue (group 1). Furthermore, we distinguished OTUs that were obtained from sponge tissue (in a previous study) but not from sponge isolates (group 2), and there were also OTUs that were not obtained from sponge tissue but were obtained from sponge isolates (group 3). The 17 OTUs categorized into group 1 represented 10 to 14% of all bacterial OTUs that were present in a large clone library previously generated from Haliclona (gellius) sp. sponge tissue, which is higher than previously reported cultivability scores for sponge-associated bacteria. Six of these 17 OTUs were not obtained from agar plates, which underlines that the use of multiple cultivation methods is worthwhile to increase the diversity of the cultivable microorganisms from sponges.  相似文献   
84.
To identify pathways involved in adult lung regeneration, we employ a unilateral pneumonectomy (PNX) model that promotes regenerative alveolarization in the remaining intact lung. We show that PNX stimulates pulmonary capillary endothelial cells (PCECs) to produce angiocrine growth factors that induce proliferation of epithelial progenitor cells supporting alveologenesis. Endothelial cells trigger expansion of cocultured epithelial cells, forming three-dimensional angiospheres reminiscent of alveolar-capillary sacs. After PNX, endothelial-specific inducible genetic ablation of Vegfr2 and Fgfr1 in mice inhibits production of MMP14, impairing alveolarization. MMP14 promotes expansion of epithelial progenitor cells by unmasking cryptic EGF-like ectodomains that activate the EGF receptor (EGFR). Consistent with this, neutralization of MMP14 impairs EGFR-mediated alveolar regeneration, whereas administration of EGF or intravascular transplantation of MMP14(+) PCECs into pneumonectomized Vegfr2/Fgfr1-deficient mice restores alveologenesis and lung inspiratory volume and compliance function. VEGFR2 and FGFR1 activation in PCECs therefore increases MMP14-dependent bioavailability of EGFR ligands to initiate and sustain alveologenesis.  相似文献   
85.
Prion protein is capable of folding into multiple self-replicating prion strains that produce phenotypically distinct neurological disorders. Although prion strains often breed true upon passage, they can also transform or “mutate” despite being devoid of nucleic acids. To dissect the mechanism of prion strain transformation, we studied the physicochemical evolution of a mouse synthetic prion (MoSP) strain, MoSP1, after repeated passage in mice and cultured cells. We show that MoSP1 gradually adopted shorter incubation times and lower conformational stabilities. These changes were accompanied by structural transformation, as indicated by a shift in the molecular mass of the protease-resistant core of MoSP1 from approximately 19 kDa [MoSP1(2)] to 21 kDa [MoSP1(1)]. We show that MoSP1(1) and MoSP1(2) can breed with fidelity when cloned in cells; however, when present as a mixture, MoSP1(1) preferentially proliferated, leading to the disappearance of MoSP1(2). In culture, the rate of this transformation process can be influenced by the composition of the culture media and the presence of polyamidoamines. Our findings demonstrate that prions can exist as a conformationally diverse population of strains, each capable of replicating with high fidelity. Rare conformational conversion, followed by competitive selection among the resulting pool of conformers, provides a mechanism for the adaptation of the prion population to its host environment.  相似文献   
86.
87.
88.
Neurodegenerative diseases such as Alzheimer's disease (AD) are characterized by an abnormal aggregation of misfolded beta‐sheet rich proteins such as β‐amyloid (Aβ). Various ubiquitously expressed molecular chaperones control the correct folding of cellular proteins and prevent the accumulation of harmful species. We here describe a novel anti‐aggregant chaperone function for the neuroendocrine protein proSAAS, an abundant secretory polypeptide that is widely expressed within neural and endocrine tissues and which has previously been associated with neurodegenerative disease in various proteomics studies. In the brains of 12‐month‐old APdE9 mice, and in the cortex of a human AD‐affected brain, proSAAS immunoreactivity was highly colocalized with amyloid pathology. Immunoreactive proSAAS co‐immunoprecipitated with Aβ immunoreactivity in lysates from APdE9 mouse brains. In vitro, proSAAS efficiently prevented the fibrillation of Aβ1–42 at molar ratios of 1 : 10, and this anti‐aggregation effect was dose dependent. Structure‐function studies showed that residues 97–180 were sufficient for the anti‐aggregation function against Aβ. Finally, inclusion of recombinant proSAAS in the medium of Neuro2a cells, as well as lentiviral‐mediated proSAAS over‐expression, blocked the neurocytotoxic effect of Aβ1–42 in Neuro2a cells. Taken together, our results suggest that proSAAS may play a role in Alzheimer's disease pathology.

  相似文献   

89.
90.
The rate, polarity, and symmetry of the flow of the plant hormone auxin are determined by the polar cellular localization of PIN-FORMED (PIN) auxin efflux carriers. Flavonoids, a class of secondary plant metabolites, have been suspected to modulate auxin transport and tropic responses. Nevertheless, the identity of specific flavonoid compounds involved and their molecular function and targets in vivo are essentially unknown. Here we show that the root elongation zone of agravitropic pin2/eir1/wav6/agr1 has an altered pattern and amount of flavonol glycosides. Application of nanomolar concentrations of flavonols to pin2 roots is sufficient to partially restore root gravitropism. By employing a quantitative cell biological approach, we demonstrate that flavonoids partially restore the formation of lateral auxin gradients in the absence of PIN2. Chemical complementation by flavonoids correlates with an asymmetric distribution of the PIN1 protein. pin2 complementation probably does not result from inhibition of auxin efflux, as supply of the auxin transport inhibitor N-1-naphthylphthalamic acid failed to restore pin2 gravitropism. We propose that flavonoids promote asymmetric PIN shifts during gravity stimulation, thus redirecting basipetal auxin streams necessary for root bending.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号