首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   10篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   15篇
  2020年   2篇
  2019年   8篇
  2018年   9篇
  2017年   6篇
  2016年   8篇
  2015年   13篇
  2014年   16篇
  2013年   19篇
  2012年   22篇
  2011年   17篇
  2010年   7篇
  2009年   7篇
  2008年   6篇
  2007年   8篇
  2006年   5篇
  2005年   5篇
  2004年   5篇
  2003年   4篇
  2001年   2篇
  2000年   5篇
  1999年   1篇
  1997年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有199条查询结果,搜索用时 234 毫秒
21.
We have identified an omega,E,E-farnesyl diphosphate (omega,E,E-FPP) synthase, encoded by the open reading frame Rv3398c, from Mycobacterium tuberculosis that is unique among reported FPP synthases in that it does not contain the type I (eukaryotic) or the type II (eubacterial) omega,E,E-FPP synthase signature motif. Instead, it has a structural motif similar to that of the type I geranylgeranyl diphosphate synthase found in Archaea. Thus, the enzyme represents a novel class of omega,E,E-FPP synthase. Rv3398c was cloned from the M. tuberculosis H37Rv genome and expressed in Mycobacterium smegmatis using a new mycobacterial expression vector (pVV2) that encodes an in-frame N-terminal affinity tag fusion with the protein of interest. The fusion protein was well expressed and could be purified to near homogeneity, allowing facile kinetic analysis of recombinant Rv3398c. Of the potential allylic substrates tested, including dimethylallyl diphosphate, only geranyl diphosphate served as an acceptor for isopentenyl diphosphate. The enzyme has an absolute requirement for divalent cation and has a K(m) of 43 microM for isopentenyl diphosphate and 9.8 microM for geranyl diphosphate and is reported to be essential for the viability of M. tuberculosis.  相似文献   
22.
The DosR regulon in Mycobacterium tuberculosis is involved in respiration-limiting conditions, its induction is controlled by two histidine kinases, DosS and DosT, and recent experimental evidence indicates DosS senses either molecular oxygen or a redox change. Under aerobic conditions, induction of the DosR regulon by DosS, but not DosT, was observed after the addition of ascorbate, a powerful cytochrome c reductant, demonstrating that DosS responds to a redox signal even in the presence of high oxygen tension. During hypoxic conditions, regulon induction was attenuated by treatment with compounds that occluded electron flow into the menaquinone pool or decreased the size of the menaquinone pool itself. Increased regulon expression during hypoxia was observed when exogenous menaquinone was added, demonstrating that the menaquinone pool is a limiting factor in regulon induction. Taken together, these data demonstrate that a reduced menaquinone pool directly or indirectly triggers induction of the DosR regulon via DosS. Biochemical analysis of menaquinones upon entry into hypoxic/anaerobic conditions demonstrated the disappearance of the unsaturated species and low-level maintenance of the mono-saturated menaquinone. Relative to the unsaturated form, an analog of the saturated form is better able to induce signaling via DosS and rescue inhibition of menaquinone synthesis and is less toxic. The menaquinone pool is central to the electron transport system (ETS) and therefore provides a mechanistic link between the respiratory state of the bacilli and DosS signaling. Although this report demonstrates that DosS responds to a reduced ETS, it does not rule out a role for oxygen in silencing signaling.  相似文献   
23.
Overproduction of hypochlorous acid (HOCl) has been associated with the development of a variety of disorders such as inflammation, heart disease, pulmonary fibrosis, and cancer through its ability to modify various biomolecules. HOCl is a potent oxidant generated by the myeloperoxidase-hydrogen peroxide-chloride system. Recently, we have provided evidence to support the important link between higher levels of HOCl and heme destruction and free iron release from hemoglobin and RBCs. Our current findings extend this work and show the ability of HOCl to mediate the destruction of metal-ion derivatives of tetrapyrrole macrocyclic rings, such as cyanocobalamin (Cobl), a common pharmacological form of vitamin B12. Cyanocobalamin is a water-soluble vitamin that plays an essential role as an enzyme cofactor and antioxidant, modulating nucleic acid metabolism and gene regulation. It is widely used as a therapeutic agent and supplement, because of its efficacy and stability. In this report, we demonstrate that although Cobl can be an excellent antioxidant, exposure to high levels of HOCl can overcome the beneficial effects of Cobl and generate proinflammatory reaction products. Our rapid kinetic, HPLC, and mass spectrometric analyses showed that HOCl can mediate corrin ring destruction and liberate cyanogen chloride (CNCl) through a mechanism that initially involves α-axial ligand replacement in Cobl to form a chlorinated derivative, hydrolysis, and cleavage of the phosphonucleotide moiety. Additionally, it can liberate free Co, which can perpetuate metal-ion-induced oxidant stress. Taken together, these results are the first report of the generation of toxic molecular products through the interaction of Cobl with HOCl.  相似文献   
24.
The role of random amplified polymorphic DNA (RAPD) markers in detecting intra-clonal genetic variability in vegetatively propagated UPASI-9 clone of tea (Camellia sinensis) was studied. Twenty five decamer primers were used, of which three did not amplify, three gave single bands and the rest of nineteen primers generated upto twelve bands (an average of 6.3 bands per primer). Twenty one primers exhibiting amplified products gave monomorphic banding patterns. Only one primer (OPE-17) gave a unique extra band of similar size in four plants.  相似文献   
25.
26.
27.
Identification of pathogen-specific biomarkers present in patients' serum or urine samples can be a useful diagnostic approach. In efforts to discover Mycobacterium tuberculosis (Mtb) biomarkers we identified by mass spectroscopy a unique 21-mer Mtb peptide sequence (VVLGLTVPGGVELLPGVALPR) present in the urines of TB patients from Zimbabwe. This peptide has 100% sequence homology with the protein TBCG_03312 from the C strain of Mtb (a clinical isolate identified in New York, NY, USA) and 95% sequence homology with Mtb oxidoreductase (MRGA423_21210) from the clinical isolate MTB423 (identified in Kerala, India). Alignment of the genes coding for these proteins show an insertion point mutation relative to Rv3368c of the reference H37Rv strain, which generated a unique C-terminus with no sequence homology with any other described protein. Phylogenetic analysis utilizing public sequence data shows that the insertion mutation is apparently a rare event. However, sera from TB patients from distinct geographical areas of the world (Peru, Vietnam, and South Africa) contain antibodies that recognize a purified recombinant C-terminus of the protein, thus suggesting a wider distribution of isolates that produce this protein.  相似文献   
28.
We have isolated cell wall peptidoglycan associated proteins (CW-Pr) of Mycobacterium tuberculosis H37Ra by chemical treatment with trifluoromethanesulfonic acid:anisole (2:1), which further resolved into 71, 60 and 45 kDa proteins on SDS-PAGE. A study was carried out to investigate the immunoreactivity of these proteins with blood samples from 4 categories, including 15 tuberculous patients (TB), 5 tuberculous patients on ATT (TBT), 10 PPD non-reactive healthy controls (HPPD?) and 11 PPD reactive healthy controls (HPPD+). Comparing the proliferative responses to cell wall protein antigens, it was observed that the 71 kDa protein gave maximum stimulation with PBMCs from the TB and HPPD+ groups. The adherent PBMCs from the TB group also demonstrated enhanced phagocytosis, particularly in the presence of 71 and 45 kDa proteins, and the phagocytic index was significantly higher (P < 0.05) than the TBT group. However, PBMCs from of the groups recognized the 60 kDa cell wall antigen. Our results suggest that the 71 kDa protein from the cell wall of M. tuberculosis is highly immunogenic.  相似文献   
29.
In this study, we examined the tissue specificity of inflammatory and oxidative responses and mitochondrial dysfunction in mice infected by Trypanosoma cruzi. In acute mice, parasite burden and associated inflammatory infiltrate was detected in all tissues (skeletal muscle>heart>stomach>colon). The extent of oxidative damage and mitochondrial decay was in the order of heart>stomach>skeletal muscle>colon. In chronic mice, a low level of parasite burden and inflammation continued in all tissues; however, oxidant overload and mitochondrial inefficiency mainly persisted in the heart tissue (also detectable in stomach). Further, we noted an unvaryingly high degree of oxidative stress, compromised antioxidant status, and decreased mitochondrial respiratory complex activities in peripheral blood of infected mice. A pair-wise log analysis showed a strong positive correlation in the heart-versus-blood (but not other tissues) levels of oxidative stress markers (malonyldialdehyde, glutathione disulfide), antioxidants (superoxide dismutase, MnSOD, catalase), and mitochondrial inhibition of respiratory complexes (CI/CIII) in infected mice. T. cruzi-induced acute inflammatory and oxidative responses are widespread in different muscle tissues. Antioxidant/oxidant status and mitochondrial function are consistently attenuated in the heart, and reflected in the peripheral-blood of T. cruzi-infected mice. Our results provide an impetus to investigate the peripheral-blood oxidative responses in relation to clinical severity of heart disease in chagasic human patients.  相似文献   
30.
The Legionella pneumophila Dot/Icm type IV secretion system is essential for the biogenesis of a phagosome that supports bacterial multiplication, most likely via the functions of its protein substrates. Recent studies indicate that fundamental cellular processes, such as vesicle trafficking, stress response, autophagy and cell death, are modulated by these effectors. However, how each translocated protein contributes to the modulation of these pathways is largely unknown. In a screen to search substrates of the Dot/Icm transporter that can cause host cell death, we identified a gene whose product is lethal to yeast and mammalian cells. We demonstrate that this protein, called SidI, is a substrate of the Dot/Icm type IV protein transporter that targets the host protein translation process. Our results indicate that SidI specifically interacts with eEF1A and eEF1Bγ, two components of the eukaryotic protein translation elongation machinery and such interactions leads to inhibition of host protein synthesis. Furthermore, we have isolated two SidI substitution mutants that retain the target binding activity but have lost toxicity to eukaryotic cells, suggesting potential biochemical effect of SidI on eEF1A and eEF1Bγ. We also show that infection by L. pneumophila leads to eEF1A‐mediated activation of the heat shock regulatory protein HSF1 in a virulence‐dependent manner and deletion of sidI affects such activation. Moreover, similar response occurred in cells transiently transfected to express SidI. Thus, inhibition of host protein synthesis by specific effectors contributes to the induction of stress response in L. pneumophila‐infected cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号