首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3433篇
  免费   372篇
  2021年   46篇
  2018年   33篇
  2017年   36篇
  2016年   58篇
  2015年   101篇
  2014年   87篇
  2013年   129篇
  2012年   140篇
  2011年   167篇
  2010年   86篇
  2009年   92篇
  2008年   110篇
  2007年   116篇
  2006年   116篇
  2005年   110篇
  2004年   129篇
  2003年   92篇
  2002年   100篇
  2001年   81篇
  2000年   106篇
  1999年   83篇
  1998年   56篇
  1997年   50篇
  1996年   47篇
  1995年   43篇
  1994年   35篇
  1993年   48篇
  1992年   81篇
  1991年   68篇
  1990年   76篇
  1989年   58篇
  1988年   59篇
  1987年   81篇
  1986年   61篇
  1985年   59篇
  1984年   61篇
  1983年   47篇
  1982年   52篇
  1981年   41篇
  1980年   31篇
  1979年   45篇
  1978年   27篇
  1976年   42篇
  1975年   38篇
  1974年   43篇
  1973年   35篇
  1972年   32篇
  1971年   36篇
  1969年   28篇
  1968年   29篇
排序方式: 共有3805条查询结果,搜索用时 15 毫秒
991.
992.
The cytosolic coat-protein complex COP-I interacts with cytoplasmic 'retrieval' signals present in membrane proteins that cycle between the endoplasmic reticulum (ER) and the Golgi complex, and is required for both anterograde and retrograde transport in the secretory pathway. Here we study the role of COP-I in Golgi-to-ER transport of several distinct marker molecules. Microinjection of anti-COP-I antibodies inhibits retrieval of the lectin-like molecule ERGIC-53 and of the KDEL receptor from the Golgi to the ER. Transport to the ER of protein toxins, which contain a sequence that is recognized by the KDEL receptor, is also inhibited. In contrast, microinjection of anti-COP-I antibodies or expression of a GTP-restricted Arf-1 mutant does not interfere with Golgi-to-ER transport of Shiga toxin/Shiga-like toxin-1 or with the apparent recycling to the ER of Golgi-resident glycosylation enzymes. Overexpression of a GDP-restricted mutant of Rab6 blocks transport to the ER of Shiga toxin/Shiga-like toxin-1 and glycosylation enzymes, but not of ERGIC-53, the KDEL receptor or KDEL-containing toxins. These data indicate the existence of at least two distinct pathways for Golgi-to-ER transport, one COP-I dependent and the other COP-I independent. The COP-I-independent pathway is specifically regulated by Rab6 and is used by Golgi glycosylation enzymes and Shiga toxin/Shiga-like toxin-1.  相似文献   
993.
The high affinity interleukin-6 (IL-6) receptor is a hexameric complex consisting of two molecules each of IL-6, IL-6 receptor (IL-6R), and the high affinity converter and signaling molecule, gp130. The extracellular "soluble" part of the IL-6R (sIL-6R) consists of three domains: an amino-terminal Ig-like domain and two fibronectin-type III (FN III) domains. The two FN III domains comprise the cytokine-binding domain defined by a set of 4 conserved cysteine residues and a WSXWS sequence motif. Here, we have determined the disulfide structure of the human sIL-6R by peptide mapping in the absence and presence of reducing agent. Mass spectrometric analysis of these peptides revealed four disulfide bonds and two free cysteines. The disulfides Cys102-Cys113 and Cys146-Cys157 are consistent with known cytokine-binding domain motifs, and Cys28-Cys77 with known Ig superfamily domains. An unusual cysteine connectivity between Cys6-Cys174, which links the Ig-like and NH2-terminal FN III domains causing them to fold back onto each other, has not previously been observed among cytokine receptors. The two free cysteines (Cys192 and Cys258) were detected as cysteinyl-cysteines, although a small proportion of Cys258 was reactive with the alkylating agent 4-vinylpyridine. Of the four potential N-glycosylation sites, carbohydrate moieties were identified on Asn36, Asn74, and Asn202, but not on Asn226.  相似文献   
994.
The availability of mice containing an adipocyte lipid-binding protein (ALBP/aP2) gene disruption allowed for a direct examination of the presumed role of lipid-binding proteins in the mobilization and trafficking of intracellular fatty acids. Total body and epididymal fat pad weights, as well as adipose cell morphology, were unaltered in male ALBP/aP2 disrupted mice when compared to their wild-type littermates. Analysis of adipocytes isolated from wild-type and ALBP/aP2 null mice revealed that a selective 40- and 13-fold increase in the level of the keratinocyte lipid-binding protein (KLBP) mRNA and protein, respectively, accompanied the ALBP/aP2 gene disruption. Although KLBP protein was significantly up-regulated, the total lipid-binding protein level decreased 8 -fold as a consequence of the disruption. There was no appreciable difference in the rate of fatty acid influx or esterification in adipocytes of wild-type and ALBP/aP2 null animals. To the contrary, basal lipolysis decreased approximately 40% in ALBP/aP2 nulls as compared to wild-type littermates. The glycerol release from isproterenol-stimulated ALBP/aP2 null fat cells was similarly reduced by approximately 35%. Consistent with a decrease in basal efflux, the non-esterified fatty acid (NEFA) level was nearly 3-fold greater in adipocytes from ALBP/aP2 nulls as compared to wild-type animals. The significant decrease in both basal and isoproterenol-stimulated lipolysis in adipose tissue of ALBP/aP2 null mice supports the model whereby intracellular lipid-binding proteins function as lipid chaperones, facilitating the movement of fatty acids out of the fat cell.  相似文献   
995.
996.
997.
998.
999.
The uridine insertion/deletion editing complex, which we have termed the L-complex, is composed of at least 16 polypeptides stabilized entirely by protein-protein interactions. Three L-complex proteins contain zinc finger motifs that could be involved in these interactions. In Leishmania these proteins are labeled LC-1, LC-4, and LC-7b, and the orthologs in Trypanosoma brucei are labeled MP81, MP63, and MP42. Overexpression of TAP-tagged LC-4 in Leishmania tarentolae led to a partial localization of the protein in the L-complex together with the endogenous LC-4 protein, suggesting at least a dimeric organization. Disruption of zinc fingers 1 or 2 (ZnF-1 and ZnF-2) in the tagged LC-4 protein was performed by mutation of the two zinc-binding cysteines to glycines. Disruption of ZnF-1 led to a partial growth defect and a substantive breakdown of the L-complex, whereas disruption of ZnF-2 had no effect on cell growth and caused a partial breakdown of the L-complex. A close interaction of LC-4 with 2-4 proteins, including REL1 (RNA ligase) and LC-3, was suggested by chemical crosslinking and co-immunoprecipitation experiments. Our results suggest that both ZnF-1 and ZnF-2 in LC-4 play a role in protein-protein interactions and indicate that the LC-4 subcomplex may be required for formation or stability of the entire L-complex.  相似文献   
1000.
UDP-glucose dehydrogenase (UGDH) catalyzes two oxidations of UDP-glucose to yield UDP-glucuronic acid. Pathological overproduction of extracellular matrix components may be linked to the availability of UDP-glucuronic acid; therefore UGDH is an intriguing therapeutic target. Specific inhibition of human UGDH requires detailed knowledge of its catalytic mechanism, which has not been characterized. In this report, we have cloned, expressed, and affinity-purified the human enzyme and determined its steady state kinetic parameters. The human enzyme is active as a hexamer with values for Km and Vmax that agree well with those reported for a bovine homolog. We used crystal coordinates for Streptococcus pyogenes UGDH in complex with NAD+ cofactor and UDP-glucose substrate to generate a model of the enzyme active site. Based on this model, we selected Cys-276 and Lys-279 as likely catalytic residues and converted them to serine and alanine, respectively. Enzymatic activity of C276S and K279A point mutants was not measurable under normal assay conditions. Rate constants measured over several hours demonstrated that K279A continued to turn over, although 250-fold more slowly than wild type enzyme. C276S, however, performed only a single round of oxidation, indicating that it is essential for the second oxidation. This result is consistent with the postulated role of Cys-276 as a catalytic residue and supports its position in the reaction mechanism for the human enzyme. Lys-279 is likely to have a role in positioning active site residues and in maintaining the hexameric quaternary structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号