首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1705篇
  免费   106篇
  国内免费   2篇
  2022年   13篇
  2021年   21篇
  2020年   10篇
  2019年   8篇
  2018年   18篇
  2017年   19篇
  2016年   37篇
  2015年   53篇
  2014年   70篇
  2013年   100篇
  2012年   130篇
  2011年   123篇
  2010年   92篇
  2009年   79篇
  2008年   94篇
  2007年   86篇
  2006年   98篇
  2005年   99篇
  2004年   107篇
  2003年   79篇
  2002年   70篇
  2001年   12篇
  2000年   7篇
  1999年   17篇
  1998年   16篇
  1997年   11篇
  1996年   11篇
  1995年   14篇
  1994年   15篇
  1993年   12篇
  1992年   14篇
  1991年   12篇
  1990年   14篇
  1989年   12篇
  1988年   11篇
  1987年   8篇
  1986年   13篇
  1985年   15篇
  1984年   11篇
  1983年   11篇
  1982年   11篇
  1981年   10篇
  1980年   11篇
  1979年   11篇
  1977年   7篇
  1975年   6篇
  1974年   7篇
  1973年   11篇
  1971年   6篇
  1962年   5篇
排序方式: 共有1813条查询结果,搜索用时 31 毫秒
41.
International Journal of Peptide Research and Therapeutics - The lysosomal endoprotease legumain (asparaginyl endoprotease) has been proposed as a putative biomarker in prostate tumours, in which...  相似文献   
42.
Virologica Sinica - Hepatitis C virus (HCV) is still one of the main causes of liver disease worldwide. Metabolic disorders, including non-alcoholic fatty liver disease (NAFLD), induced by HCV have...  相似文献   
43.
Embryonic stem (ES) cells are a useful experimental material to recapitulate the differentiation steps of early embryos, which are usually invisible and inaccessible from outside of the body, especially in mammals. ES cells have greatly facilitated the analyses of gene expression profiles and cell characteristics. In addition, understanding the mechanisms during neural differentiation is important for clinical purposes, such as developing new therapeutic methods or regenerative medicine. As neurons have very limited regenerative ability, neurodegenerative diseases are usually intractable, and patients suffer from the disease throughout their lifetimes. The functional cells generated from ES cells in vitro could replace degenerative areas by transplantation. In this review, we will first demonstrate the historical views and widely accepted concepts regarding the molecular mechanisms of neural induction and positional information to produce the specific types of neurons in model animals. Next, we will describe how these concepts have recently been applied to the research in the establishment of the methodology of neural differentiation from mammalian ES cells. Finally, we will focus on examples of the applications of differentiation systems to clinical purposes. Overall, the discussion will focus on how historical developmental studies are applied to state‐of‐the‐art stem cell research.  相似文献   
44.
Insulin-dependent translocation of glucose transporter 4 (Glut4) to the plasma membrane of fat and skeletal muscle cells plays the key role in postprandial clearance of blood glucose. Glut4 represents the major cell-specific component of the insulin-responsive vesicles (IRVs). It is not clear, however, whether the presence of Glut4 in the IRVs is essential for their ability to respond to insulin stimulation. We prepared two lines of 3T3-L1 cells with low and high expression of myc7-Glut4 and studied its translocation to the plasma membrane upon insulin stimulation, using fluorescence-assisted cell sorting and cell surface biotinylation. In undifferentiated 3T3-L1 preadipocytes, translocation of myc7-Glut4 was low regardless of its expression levels. Coexpression of sortilin increased targeting of myc7-Glut4 to the IRVs, and its insulin responsiveness rose to the maximal levels observed in fully differentiated adipocytes. Sortilin ectopically expressed in undifferentiated cells was translocated to the plasma membrane regardless of the presence or absence of myc7-Glut4. AS160/TBC1D4 is expressed at low levels in preadipocytes but is induced in differentiation and provides an additional mechanism for the intracellular retention and insulin-stimulated release of Glut4.Adipocytes, skeletal muscle cells, and some neurons respond to insulin stimulation by translocating intracellular glucose transporter 4 (Glut4) to the plasma membrane. In all these cells, the insulin-responsive pool of Glut4 is localized in small membrane vesicles, the insulin-responsive vesicles (IRVs; Kandror and Pilch, 2011 ; Bogan, 2012 ). The protein composition of these vesicles has been largely characterized (Kandror and Pilch, 2011 ; Bogan, 2012 ). The IRVs consist predominantly of Glut4, insulin-responsive aminopeptidase (IRAP), sortilin, low-density-lipoprotein receptor–related protein 1 (LRP1), SCAMPs, and VAMP2. Glut4, IRAP, and sortilin physically interact with each other, which might be important for the biogenesis of the IRVs (Shi and Kandror, 2007 ; Shi et al., 2008 ). In addition, the IRVs compartmentalize recycling receptors, such as the transferrin receptor and the IGF2/mannose 6-phosphate receptor, although it is not clear whether these receptors represent obligatory vesicular components or their presence in the IRVs is explained by mass action (Pilch, 2008 ), inefficient sorting, or other reasons.Deciphering of the protein composition of the IRVs is important because it is likely to explain their unique functional property: translocation to the plasma membrane in response to insulin stimulation. Even if we presume that IRV trafficking is controlled by loosely associated peripheral membrane proteins, the latter should still somehow recognize the core vesicular components that create the “biochemical individuality” of this compartment. In spite of our knowledge of the IRV protein composition, however, the identity of the protein(s) that confer insulin sensitivity to these vesicles is unknown.Insulin responsiveness of the IRVs was associated with either IRAP or Glut4. Thus it was shown that Glut4 interacted with the intracellular anchor TUG (Bogan et al., 2003 , 2012 ), whereas IRAP associated with other proteins implemented in the regulation of Glut4 translocation, such as AS160 (Larance et al., 2005 ; Peck et al., 2006 ), p115 (Hosaka et al., 2005 ), tankyrase (Yeh et al., 2007 ), and several others (reviewed in Bogan, 2012 ). Results of these studies, or at least their interpretations, are not necessarily consistent with each other, as the existence of multiple independent anchors for the IRVs is, although possible, unlikely.Ablation of the individual IRV proteins has also led to controversial data. Thus knockout of IRAP decreases total protein levels of Glut4 but does not affect its translocation in the mouse model (Keller et al., 2002 ). On the contrary, knockdown of IRAP in 3T3-L1 adipocytes has a strong inhibitory effect on translocation of Glut4 (Yeh et al., 2007 ). In yet another study, knockdown of IRAP in 3T3-L1 adipocytes did not affect insulin-stimulated translocation of Glut4 but increased its plasma membrane content under basal conditions (Jordens et al., 2010 ). By the same token, total or partial ablation of Glut4 had various effects on expression levels, intracellular localization, and translocation of IRAP (Jiang et al., 2001 ; Abel et al., 2004 ; Carvalho et al., 2004 ; Gross et al., 2004 ; Yeh et al., 2007 ). Knockdown of either sortilin or LRP1 decreased protein levels of Glut4 (Shi and Kandror, 2005 ; Jedrychowski et al., 2010 ).One model that might explain these complicated and somewhat inconsistent results is that depletion of either major integral protein of the IRVs disrupts the network of interactions between vesicular proteins and thus decreases the efficiency of protein sorting into the IRVs (Kandror and Pilch, 2011 ). Correspondingly, the remaining IRV components that cannot be faithfully compartmentalized in the vesicles are either degraded (Jiang et al., 2001 ; Keller et al., 2002 ; Abel et al., 2004 ; Carvalho et al., 2004 ; Shi and Kandror, 2005 ; Yeh et al., 2007 ; Jedrychowski et al., 2010 ) or mistargeted (Jiang et al., 2001 ; Jordens et al., 2010 ), depending on experimental conditions and types of cells used in these studies. In other words, knockdown of any major IRV component may decrease vesicle formation along with insulin responsiveness. Thus, in spite of a large body of literature, the identity of protein(s) that confer insulin responsiveness to the IRVs is unknown.Here we used a gain-of-function approach to address this question. Specifically, we attempted to “build” functional IRVs in undifferentiated 3T3-L1 preadipocytes by forced expression of the relevant proteins. Undifferentiated preadipocytes do not express Glut4 or sortilin and lack IRVs (ElJack et al., 1999 ; Shi and Kandror, 2005 ; Shi et al., 2008 ). Correspondingly, IRAP, which is expressed in these cells, shows low insulin response (Ross et al., 1998 ; Shi et al., 2008 ). We found that ectopic expression of increasing amounts of Glut4 in undifferentiated preadipocytes does not lead to its marked translocation to the plasma membrane upon insulin stimulation. On the contrary, sortilin expressed in undifferentiated preadipocytes was localized in the IRVs and was translocated to the plasma membrane in response to insulin stimulation. Moreover, upon coexpression with Glut4, sortilin dramatically increased its insulin responsiveness to the levels observed in fully differentiated adipocytes. Thus sortilin may represent the key component of the IRVs, which is responsible not only for the formation of vesicles (Shi and Kandror, 2005 ; Ariga et al., 2008 ; Hatakeyama and Kanzaki, 2011 ), but also for their insulin responsiveness. It is worth noting that sortilin levels are significantly decreased in obese and diabetic humans and mice (Kaddai et al., 2009 ). We thus suggest that sortilin may be a novel and important target in the fight against insulin resistance and diabetes.Our experiments also demonstrate that undifferentiated preadipocytes lack a mechanism for the full intracellular retention of Glut4 that can be achieved by ectopic expression of AS160/TBC1D4.  相似文献   
45.
Child-only cases,” minors who receive welfare benefits as individuals, lose their eligibility at age 18 but face the same challenges to self-sufficiency as other “emerging adults.” This study examines how 59 youth in 4 New York State communities thought about and prepared for the termination of their benefits. In 8 focus groups and 12 follow-up interviews they spoke of their aspirations for education, employment, relationships with people, and material possessions. The external supports they can rely upon appear to be inadequate to overcome their limited financial resources and other external obstacles they also identified. Recommendations are intended to strengthen community supports for these youth and others in poverty, which in turn could increase access to social capital and financial aid, as they undertake their precarious passage to adulthood.  相似文献   
46.
Exercise training has demonstrated cardioprotection effects. However, the exact mechanism behind this effect is not is clear. The present study evaluated the effects of 12 weeks of previous treadmill training on the levels of oxidative damage, antioxidant enzyme activity and injury in the myocardium of rats submitted to infarction induced by isoproterenol (ISO). Isoproterenol treatment (80 mg/kg given over 2 days in two equal doses) caused arrhythmias and 60% mortality within 24 h of the last injection in the control group (C + ISO) group when compared with the saline control group (saline). Creatine Kinase ? MB levels were markedly increased in hearts from ISO-treated animals in the C + ISO group. Twelve weeks of treadmill training reduced superoxide production, lipid peroxidation levels and protein carbonylation in these animals, as well as increasing the activities and expressions of SOD and CAT. Previous training also reduced CK-MB levels and numbers of deaths by 40%, preventing the deleterious effects of ISO. Based on the data obtained in this study, it is suggested that 12-week treadmill training increases antioxidant enzymes, decreases oxidative damage and reduces the degree of infarction induced by ISO in the hearts of male rats.  相似文献   
47.
48.
Synapses are highly dynamic structures that mediate cell–cell communication in the central nervous system. Their molecular composition is altered in an activity-dependent fashion, which modulates the efficacy of subsequent synaptic transmission events. Whereas activity-dependent trafficking of individual key synaptic proteins into and out of the synapse has been characterized previously, global activity-dependent changes in the synaptic proteome have not been studied.To test the feasibility of carrying out an unbiased large-scale approach, we investigated alterations in the molecular composition of synaptic spines following mass stimulation of the central nervous system induced by pilocarpine. We observed widespread changes in relative synaptic abundances encompassing essentially all proteins, supporting the view that the molecular composition of the postsynaptic density is tightly regulated. In most cases, we observed that members of gene families displayed coordinate regulation even when they were not known to physically interact.Analysis of correlated synaptic localization revealed a tightly co-regulated cluster of proteins, consisting of mainly glutamate receptors and their adaptors. This cluster constitutes a functional core of the postsynaptic machinery, and changes in its size affect synaptic strength and synaptic size. Our data show that the unbiased investigation of activity-dependent signaling of the postsynaptic density proteome can offer valuable new information on synaptic plasticity.Excitatory synaptic transmission is the primary mode of cell–cell communication in the central nervous system. The efficacy of synaptic transmission is highly regulated, and alterations in the strength of synaptic signaling within networks of neurons provide a mechanism for learning and memory storage, as well as for overall network stability. Modulation of synapse efficacy can occur through alterations in the structure and composition of the postsynaptic spine. The synaptic abundance of several molecules has been shown to be regulated in response to activity (1).The levels of individual proteins at postsynaptic spines are regulated through multiple processes. Active transport mechanisms exist and have been well characterized for AMPA-type glutamate receptors (AMPA-Rs)1 via either insertion into the synapse or tighter association with the postsynaptic density (PSD) following lateral diffusion within the cell membrane (2). In addition to AMPA-Rs, other proteins known to be subject to activity-dependent regulation include calcium calmodulin-dependent protein kinase II alpha and beta, NMDA-type glutamate receptors (NMDA-Rs), and proteosome subunits (35). Synaptic protein content is dysregulated in a number of neuropsychiatric and neurodegenerative diseases, including Alzheimer''s disease and fragile X mental retardation (68).Most studies reported thus far have focused on a small number of selected molecules in individual experiments using a subset of synapses. Whereas learning and memory rely on the differential response of individual synapses to their specific input patterns, overall network excitability has to be maintained by homeostatic means. This homeostasis is governed by multiple pathways, and very little is known about the principles that regulate synaptic protein content across large numbers of synapses and neurons. The contributions of individual pathways and the interactions among them are largely unknown.In order to explore synaptic dynamics with a global view, we took advantage of a chemically induced mass stimulation protocol to stimulate synapses broadly throughout the central nervous system. We employed mass spectrometry and isotopically encoded isobaric peptide tagging with the iTRAQ reagent to quantify changes in the abundance of 893 proteins (9). We then analyzed changes in the relative abundance of these proteins at 0, 10, 20, and 60 min after the onset of stimulation.We observed evidence of the coordinated activation of synaptic protein groups, thereby identifying functional core complexes within the PSD. We demonstrate that adopting a quantitative systems biology approach provides insight allowing for a new level of analysis of synaptic function.  相似文献   
49.
Background aimsFirst-trimester chorionic villi (CV) are an attractive source of human mesenchymal stromal cells (hMSC) for possible applications in cellular therapy and regenerative medicine. Human MSC from CV were monitored for genetic stability in long-term cultures.MethodsWe set up a good manufacturing practice cryopreservation procedure for small amounts of native CV samples. After isolation, hMSC were in vitro cultured and analyzed for biological end points. Genome stability at different passages of expansion was explored by karyotype, genome-wide array-comparative genomic hybridization and microsatellite genotyping.ResultsGrowth curve analysis revealed a high proliferative potential of CV-derived cells. Immunophenotyping showed expression of typical MSC markers and absence of hematopoietic markers. Analysis of multilineage potential demonstrated efficient differentiation into adipocytes, osteocytes, chondrocytes and induction of neuro-glial commitment. In angiogenic experiments, differentiation in endothelial cells was detected by in vitro Matrigel assay after vascular endothelial growth factor stimulation. Data obtained from karyotyping, array-comparative genomic hybridization and microsatellite genotyping comparing early with late DNA passages did not show any genomic variation at least up to passage 10. Aneuploid clones appeared in four of 14 cases at latest passages, immediately before culture growth arrest.ConclusionsOur findings indicate that hCV-MSC are genetically stable in long-term cultures at least up to passage 10 and that it is possible to achieve clinically relevant amounts of hCV-MSC even after few stages of expansion. Genome abnormalities at higher passages can occasionally occur and are always associated with spontaneous growth arrest. Under these circumstances, hCV-MSC could be suitable for therapeutic purposes.  相似文献   
50.

Rationale

Few studies have analyzed the association of socioeconomic and sociodemographic factors with asthma related outcomes in early childhood, including Fraction of exhaled Nitric Oxide (FeNO) and airway resistance (Rint). We examined the association of socioeconomic and sociodemographic factors with wheezing, asthma, FeNO and Rint at age 6 years. Additionally, the role of potential mediating factors was studied.

Methods

The study included 6717 children participating in The Generation R Study, a prospective population-based cohort study. Data on socioeconomic and sociodemographic factors, wheezing and asthma were obtained by questionnaires. FeNO and Rint were measured at the research center. Statistical analyses were performed using logistic and linear regression models.

Results

At age 6 years, 9% (456/5084) of the children had wheezing symptoms and 7% (328/4953) had asthma. Children from parents with financial difficulties had an increased risk of wheezing (adjusted Odds Ratio (aOR) = 1.63, 95% Confidence Interval (CI):1.18–2.24). Parental low education, paternal unemployment and child''s male sex were associated with asthma, independent of other socioeconomic or sociodemographic factors (aOR = 1.63, 95% CI:1.24–2.15, aOR = 1.85, 95% CI:1.11–3.09, aOR = 1.58, 95% CI:1.24–2.01, respectively). No socioeconomic or gender differences in FeNO were found. The risks of wheezing, asthma, FeNO and Rint measurements differed between ethnic groups (p<0.05). Associations between paternal unemployment, child''s sex, ethnicity and asthma related outcomes remained largely unexplained.

Conclusions

This study showed differences between the socioeconomic and sociodemographic correlates of wheezing and asthma compared to the correlates of FeNO and Rint at age 6 years. Several socioeconomic and sociodemographic factors were independently associated with wheezing and asthma. Child''s ethnicity was the only factor independently associated with FeNO. We encourage further studies on underlying pathways and public health intervention programs, focusing on reducing socioeconomic or sociodemographic inequalities in asthma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号