全文获取类型
收费全文 | 847篇 |
免费 | 57篇 |
专业分类
904篇 |
出版年
2023年 | 2篇 |
2022年 | 10篇 |
2021年 | 12篇 |
2020年 | 6篇 |
2019年 | 11篇 |
2018年 | 12篇 |
2017年 | 21篇 |
2016年 | 24篇 |
2015年 | 25篇 |
2014年 | 44篇 |
2013年 | 56篇 |
2012年 | 48篇 |
2011年 | 58篇 |
2010年 | 46篇 |
2009年 | 35篇 |
2008年 | 40篇 |
2007年 | 50篇 |
2006年 | 48篇 |
2005年 | 36篇 |
2004年 | 43篇 |
2003年 | 37篇 |
2002年 | 29篇 |
2001年 | 16篇 |
2000年 | 16篇 |
1999年 | 15篇 |
1998年 | 14篇 |
1997年 | 8篇 |
1996年 | 8篇 |
1995年 | 7篇 |
1994年 | 10篇 |
1993年 | 7篇 |
1992年 | 9篇 |
1991年 | 19篇 |
1990年 | 6篇 |
1989年 | 5篇 |
1988年 | 7篇 |
1987年 | 5篇 |
1986年 | 3篇 |
1985年 | 6篇 |
1984年 | 10篇 |
1983年 | 2篇 |
1982年 | 5篇 |
1981年 | 4篇 |
1979年 | 8篇 |
1977年 | 2篇 |
1976年 | 6篇 |
1974年 | 4篇 |
1973年 | 2篇 |
1967年 | 2篇 |
1966年 | 2篇 |
排序方式: 共有904条查询结果,搜索用时 15 毫秒
21.
Oliaro-Bosso S Taramino S Viola F Tagliapietra S Ermondi G Cravotto G Balliano G 《Journal of enzyme inhibition and medicinal chemistry》2009,24(2):589-598
Human and murine lanosterol synthases (EC 5.4.99.7) were studied as targets of a series of umbelliferone aminoalkyl derivatives previously tested as inhibitors of oxidosqualene cyclases from other eukaryotes. Tests were carried out on cell cultures of human keratinocytes and mouse 3T3 fibroblasts incubated with radiolabeled acetate, and on homogenates prepared from yeast cells expressing human lanosterol synthase, incubated with radiolabeled oxidosqualene. In cell cultures of both human keratinocytes and mouse 3T3 fibroblasts, the observed inhibition of cholesterol biosynthesis was selective for oxidosqualene cyclase. The most active compounds bear an allylmethylamino chain in position-7 of the coumarin ring. The inhibition was critically dependent on the position and length of the inhibitor side chain, as well as on the type of aminoalkyl group inserted at the end of the same chain. Molecular docking analyses, carried out to clarify details of inhibitors/enzyme interactions, proved useful to explain the observed differences in inhibitory activities. 相似文献
22.
Sipione S Ewen C Shostak I Michalak M Bleackley RC 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(6):3212-3219
Calreticulin is an endoplasmic reticulum-resident chaperone that is stored in the cytotoxic granules of CTLs and NK cells and is released with granzymes and perforin upon recognition of target cells. To investigate the role of calreticulin in CTL-mediated killing, we generated CTL lines from crt(+/+) and crt(-/-) mice expressing a constitutively active form of calcineurin in the heart. Crt(-/-) CTLs showed reduced cytotoxic activity toward allogeneic target cells despite normal production, intracellular localization, and activity of granzymes and despite perforin overexpression. Comparable or higher amounts of granzymes were degranulated by crt(-/-) cells in response to immobilized anti-CD3 Abs, indicating that calreticulin is dispensable for the signal transduction that leads to granule exocytosis. The ability to form conjugates with target cells was affected in the crt(-/-) CTLs, explaining the observed reduction in cytotoxicity. Conjugate formation and cytotoxicity were completely restored by treatments that facilitate recognition and contact with target cells, a prerequisite for degranulation and killing. Therefore, we conclude that calreticulin is dispensable for the cytolytic activity of granzymes and perforin, but it is required for efficient CTL-target cell interaction and for the formation of the death synapse. 相似文献
23.
Emilia Chiancone Pierpaolo Ceci Andrea Ilari Frederica Ribacchi Simonetta Stefanini 《Biometals》2004,17(3):197-202
Iron is required by most organisms, but is potentially toxic due to the low solubility of the stable oxidation state, Fe(III), and to the tendency to potentiate the production of reactive oxygen species, ROS. The reactivity of iron is counteracted by bacteria with the same strategies employed by the host, namely by sequestering the metal into ferritin, the ubiquitous iron storage protein. Ferritins are highly conserved, hollow spheres constructed from 24 subunits that are endowed with ferroxidase activity and can harbour up to 4500 iron atoms as oxy-hydroxide micelles. The release of the metal upon reduction can alter the microorganism-host iron balance and hence permit bacteria to overcome iron limitation. In bacteria, the relevance of the Dps (DNA-binding proteins from starved cells) family in iron storage-detoxification has been recognized recently. The seminal studies on the protein from Listeria innocua demonstrated that Dps proteins have ferritin-like activity and most importantly have the capacity to attenuate the production of ROS. This latter function allows bacterial pathogens that lack catalase, e.g. Porphyromonas gingivalis, to survive in an aerobic environment and resist to peroxide stress. 相似文献
24.
Eoin N. Leen Frédéric Sorgeloos Samantha Correia Yasmin Chaudhry Fabien Cannac Chiara Pastore Yingqi Xu Stephen C. Graham Stephen J. Matthews Ian G. Goodfellow Stephen Curry 《PLoS pathogens》2016,12(1)
Translation initiation is a critical early step in the replication cycle of the positive-sense, single-stranded RNA genome of noroviruses, a major cause of gastroenteritis in humans. Norovirus RNA, which has neither a 5´ m7G cap nor an internal ribosome entry site (IRES), adopts an unusual mechanism to initiate protein synthesis that relies on interactions between the VPg protein covalently attached to the 5´-end of the viral RNA and eukaryotic initiation factors (eIFs) in the host cell. For murine norovirus (MNV) we previously showed that VPg binds to the middle fragment of eIF4G (4GM; residues 652–1132). Here we have used pull-down assays, fluorescence anisotropy, and isothermal titration calorimetry (ITC) to demonstrate that a stretch of ~20 amino acids at the C terminus of MNV VPg mediates direct and specific binding to the HEAT-1 domain within the 4GM fragment of eIF4G. Our analysis further reveals that the MNV C terminus binds to eIF4G HEAT-1 via a motif that is conserved in all known noroviruses. Fine mutagenic mapping suggests that the MNV VPg C terminus may interact with eIF4G in a helical conformation. NMR spectroscopy was used to define the VPg binding site on eIF4G HEAT-1, which was confirmed by mutagenesis and binding assays. We have found that this site is non-overlapping with the binding site for eIF4A on eIF4G HEAT-1 by demonstrating that norovirus VPg can form ternary VPg-eIF4G-eIF4A complexes. The functional significance of the VPg-eIF4G interaction was shown by the ability of fusion proteins containing the C-terminal peptide of MNV VPg to inhibit in vitro translation of norovirus RNA but not cap- or IRES-dependent translation. These observations define important structural details of a functional interaction between norovirus VPg and eIF4G and reveal a binding interface that might be exploited as a target for antiviral therapy. 相似文献
25.
The assays commonly used to determine ATP content in biological samples generally measure total cellular ATP content, but not the different subcellular pools. In this study a new simple method for measuring ATP content in a cytosol-enriched fraction (CEF) was developed, based on a rapid cytosolic ATP extraction (by an isotonic grinding medium that preserves organelle integrity) and its detection monitoring the NADPH fluorescence generated via hexokinase/glucose-6-phosphate dehydrogenase coupled reactions. Four protocols, differing for timing of NADPH generation and for either the presence or absence of some inhibitors of ATP and NADPH metabolism, were compared by determining CEF-ATP, as well as total ATP, in durum wheat (Triticum durum Desf.) etiolated seedlings. The best protocol was the one adopting both simultaneous NADPH generation and use of inhibitors during tissue homogenization. This protocol also showed higher performance than the classical trichloroacetic acid extraction. Using the new method, CEF-ATP content was assessed in control, salt- and osmotic-stressed seedlings, resulting 2.68 ± 0.04, 1.69 ± 0.12 (?40%) and 1.35 ± 0.16 (?50%) μmol/g dry weight, respectively. Finally, the effects of this stress-dependent decrease of cytosolic ATP were evaluated with respect to a possible modulation of two mitochondrial energy-dissipating systems, the uncoupling protein (PUCP) and the K+ channel (PmitoKATP), both inhibited by cytosolic ATP. Experiments carried out at different physiological ATP concentrations suggest that the decreased cytosolic ATP content occurring under hyperosmotic stress may contribute to attenuate inhibition of PmitoKATP, thus promoting its activity (up to about 90%), but not of PUCP, that appears to lose ATP sensitivity under stress condition. 相似文献
26.
1. Changes in protein fluorescence have been utilized in determining the stoicheiometry and dissociation constants of the complexes of diphtheria toxin with NADH(2), NAD, NADPH(2) and NADP. 2. The binding stoicheiometry is 2moles of NADH(2) and 1mole of NADPH(2)/mole of diphtheria toxin. The binding sites for NADH(2) appear to be equivalent and independent. 3. The toxin shows a higher affinity for the reduced than for the oxidized forms of the nucleotides. 4. Dissociation constants at 0.01I, pH7 and 25 degrees are 0.7x10(-6)m for NADH(2) and 0.45x10(-6)m for NADPH(2). Dissociation constants increase with increasing ionic strength, indicating that the binding is mainly electrostatic. 5. Bound NADH(2) and NADPH(2) may be activated to fluoresce by the transfer of energy from the excited aromatic amino acids of the toxin. Activation and emission spectra of bound and free nucleotides are compared. 6. Since NAD and NADH(2) are cofactors specifically required for the inhibition of protein synthesis by diphtheria toxin, the possible role of toxin-nucleotide complexes is discussed in this regard. 相似文献
27.
We have investigated the role in the fold and RNA-binding properties of the KH modules of a hydrophobic to asparagine mutation of clinical importance in the fragile X syndrome. The mutation involves a well-conserved hydrophobic residue close to the N terminus of the second helix of the KH fold (alpha2(3) position). The effect of the mutation has been long debated: Although the mutant has been shown to disrupt the three-dimensional fold of several KH domains, the residue seems also to be directly involved in RNA binding, the main function of the KH module. Here we have used the KH3 of Nova-1, whose structure is known both in isolation and in an RNA complex, to study in detail the role of the alpha2(3) position. A detailed comparison of Nova KH3 structure with its RNA/KH complex and with other KH structures suggests a dual role for the alpha2(3) residue, which is involved both in stabilizing the hydrophobic core and in RNA contacts. We further show by nuclear magnetic resonance (NMR) studies in solution that L447 of Nova-1 in position alpha2(3) is in exchange in the absence of RNA, and becomes locked in a more rigid conformation only upon formation of an RNA complex. This implies that position alpha2(3) functions as a "gate" in the mechanism of RNA recognition of KH motifs based on the rigidification of the fold upon RNA binding. 相似文献
28.
Giuseppe Battaglia Milena Cannella Barbara Riozzi Sara Orobello Marion L. Maat‐Schieman Eleonora Aronica Carla Letizia Busceti Andrea Ciarmiello Silvia Alberti Enrico Amico Jenny Sassone Simonetta Sipione Valeria Bruno Luigi Frati Ferdinando Nicoletti Ferdinando Squitieri 《Journal of cellular and molecular medicine》2011,15(3):555-571
A defective expression or activity of neurotrophic factors, such as brain‐ and glial‐derived neurotrophic factors, contributes to neuronal damage in Huntington’s disease (HD). Here, we focused on transforming growth factor‐β (TGF‐β1), a pleiotropic cytokine with an established role in mechanisms of neuroprotection. Asymptomatic HD patients showed a reduction in TGF‐β1 levels in the peripheral blood, which was related to trinucleotide mutation length and glucose hypometabolism in the caudate nucleus. Immunohistochemical analysis in post‐mortem brain tissues showed that TGF‐β1 was reduced in cortical neurons of asymptomatic and symptomatic HD patients. Both YAC128 and R6/2 HD mutant mice showed a reduced expression of TGF‐β1 in the cerebral cortex, localized in neurons, but not in astrocytes. We examined the pharmacological regulation of TGF‐β1 formation in asymptomatic R6/2 mice, where blood TGF‐β1 levels were also reduced. In these R6/2 mice, both the mGlu2/3 metabotropic glutamate receptor agonist, LY379268, and riluzole failed to increase TGF‐β1 formation in the cerebral cortex and corpus striatum, suggesting that a defect in the regulation of TGF‐β1 production is associated with HD. Accordingly, reduced TGF‐β1 mRNA and protein levels were found in cultured astrocytes transfected with mutated exon 1 of the human huntingtin gene, and in striatal knock‐in cell lines expressing full‐length huntingtin with an expanded glutamine repeat. Taken together, our data suggest that serum TGF‐β1 levels are potential biomarkers of HD development during the asymptomatic phase of the disease, and raise the possibility that strategies aimed at rescuing TGF‐β1 levels in the brain may influence the progression of HD. 相似文献
29.
Pedone E Saviano M Bartolucci S Rossi M Ausili A Scirè A Bertoli E Tanfani F 《Journal of proteome research》2005,4(6):1972-1980
The effect of SDS, pD, and temperature on the structure and stability of the protein disulfide oxidoreductase from Pyrococcus furiosus (PfPDO) was investigated by molecular dynamic (MD) simulations and FT-IR spectroscopy. pD affects the thermostability of alpha-helices and beta-sheets differently, and 0.5% or higher SDS concentration influences the structure significantly. The experiments allowed us to detect a secondary structural reorganization at a definite temperature and pD which may correlate with a high ATPase activity of the protein. The MD simulations supported the infrared data and revealed the different behavior of the N and C terminal segments, as well as of the two active sites. 相似文献
30.
Ivanova EV Kolosov PM Birdsall B Kelly G Pastore A Kisselev LL Polshakov VI 《The FEBS journal》2007,274(16):4223-4237
The eukaryotic class 1 polypeptide chain release factor is a three-domain protein involved in the termination of translation, the final stage of polypeptide biosynthesis. In attempts to understand the roles of the middle domain of the eukaryotic class 1 polypeptide chain release factor in the transduction of the termination signal from the small to the large ribosomal subunit and in peptidyl-tRNA hydrolysis, its high-resolution NMR structure has been obtained. The overall fold and the structure of the beta-strand core of the protein in solution are similar to those found in the crystal. However, the orientation of the functionally critical GGQ loop and neighboring alpha-helices has genuine and noticeable differences in solution and in the crystal. Backbone amide protons of most of the residues in the GGQ loop undergo fast exchange with water. However, in the AGQ mutant, where functional activity is abolished, a significant reduction in the exchange rate of the amide protons has been observed without a noticeable change in the loop conformation, providing evidence for the GGQ loop interaction with water molecule(s) that may serve as a substrate for the hydrolytic cleavage of the peptidyl-tRNA in the ribosome. The protein backbone dynamics, studied using 15N relaxation experiments, showed that the GGQ loop is the most flexible part of the middle domain. The conformational flexibility of the GGQ and 215-223 loops, which are situated at opposite ends of the longest alpha-helix, could be a determinant of the functional activity of the eukaryotic class 1 polypeptide chain release factor, with that helix acting as the trigger to transmit the signals from one loop to the other. 相似文献