首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   523篇
  免费   37篇
  560篇
  2023年   1篇
  2022年   7篇
  2021年   6篇
  2020年   4篇
  2019年   5篇
  2018年   7篇
  2017年   16篇
  2016年   15篇
  2015年   15篇
  2014年   27篇
  2013年   37篇
  2012年   32篇
  2011年   37篇
  2010年   31篇
  2009年   29篇
  2008年   28篇
  2007年   31篇
  2006年   34篇
  2005年   24篇
  2004年   23篇
  2003年   25篇
  2002年   20篇
  2001年   4篇
  2000年   7篇
  1999年   2篇
  1998年   14篇
  1997年   7篇
  1996年   6篇
  1995年   3篇
  1994年   7篇
  1993年   3篇
  1992年   2篇
  1991年   6篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   4篇
  1979年   5篇
  1977年   1篇
  1976年   4篇
  1974年   4篇
  1973年   2篇
  1970年   1篇
  1967年   1篇
排序方式: 共有560条查询结果,搜索用时 15 毫秒
51.
52.
Iron is required by most organisms, but is potentially toxic due to the low solubility of the stable oxidation state, Fe(III), and to the tendency to potentiate the production of reactive oxygen species, ROS. The reactivity of iron is counteracted by bacteria with the same strategies employed by the host, namely by sequestering the metal into ferritin, the ubiquitous iron storage protein. Ferritins are highly conserved, hollow spheres constructed from 24 subunits that are endowed with ferroxidase activity and can harbour up to 4500 iron atoms as oxy-hydroxide micelles. The release of the metal upon reduction can alter the microorganism-host iron balance and hence permit bacteria to overcome iron limitation. In bacteria, the relevance of the Dps (DNA-binding proteins from starved cells) family in iron storage-detoxification has been recognized recently. The seminal studies on the protein from Listeria innocua demonstrated that Dps proteins have ferritin-like activity and most importantly have the capacity to attenuate the production of ROS. This latter function allows bacterial pathogens that lack catalase, e.g. Porphyromonas gingivalis, to survive in an aerobic environment and resist to peroxide stress.  相似文献   
53.
One of the most important outcomes of modern biology has been the demonstration of the unity of life. All living beings are in fact descendants of a unique ancestor commonly referred to as Luca (the Last universal common ancestor). The discovery - nearly 30 years ago by Carl Woese - that present-day life on our planet can be assigned to only three domains: two of prokaryotic nature (Archaea and Bacteria), and one eukaryoyic (Eucarya), has given birth to a new field of investigation aimed at determining the nature of Luca. Today, thanks to the accumulation of genomic data, we can loop back into the past and infer a few characters of Luca by comparing what present-day organisms have in common. For example, it is now clear that Luca was a cellular organism provided with a cytoplasmic membrane, and that it harboured already a quite sophisticated translation apparatus. However, the inference of other characters of Luca from comparative genomics is less straightforward: for instance, a few key molecular mechanisms for DNA replication are non-homologous across the three domains and their distribution is often puzzling. This evidence has been embraced by proponents of the hypothesis that Luca harboured an RNA genome and that its replacement by DNA and the appearance of the corresponding molecular systems would have occurred independently in the three life domains after their divergence. However, an equally likely scenario would be that of a Luca with a DNA genome and of a subsequent replacement of its DNA-replication systems by non-homologous counterparts either in the bacterial or in the archaeal/eukaroytic branch. Nevertheless, including the viral world into the picture of the tree of life may thus provide us with precious insights into our most distant past since the invention and spread potential of viruses may have played a key role in early evolution.  相似文献   
54.
In pursuing research on the antiviral, interferon (IFN)-inducing tilorone congeners, a new series of fluoren-carboxyhydroxyesters has been prepared and biologically explored. These esters have subsequently been used as sugar acceptors in the enzymatic transglycosylation reaction using the 'retaining' beta-glycosidase from the archaeon Sulfolobus solfataricus (Ssbeta-Gly). Both aglycones (1-6) and corresponding beta-glucosides (beta-glu 1-beta-glu 6) have been screened for cytotoxicity, interferon-stimulating and antiviral properties against HSV-2. It was found that the addition of compounds beta-glu 5, beta-glu 6 and beta-glu 4 to HSV-2 infected U937 cells downregulates viral replication and triggers cells to release IFN-alpha/beta. Taken together, the results showed improved pharmacological profiles as a consequence of glycosylation. A molecular modelling study carried out on this series of compounds completed the structural characterisation of the novel compounds.  相似文献   
55.
56.
The ability to visualize plasmid DNA entrapment in muscle cells undergoing an "in vivo" electroporation treatment was investigated on BALB/c mice using a 7-T magnetic resonance imaging (MRI) scanner using the paramagnetic Gd-DOTA-spd complex as imaging reporter. Gd-DOTA-spd bears a tripositively charged spermidine residue that yields a strong binding affinity toward the negatively charged DNA chain (6.4 kb, K(a) = 2.2 x 10(3) M(-1) for approximately 2500 +/- 500 binding sites). Cellular colocalization of Gd-DOTA-spd and plasmid DNA has been validated by histological analysis of excised treated muscle. In vivo MRI visualization of Gd-DOTA-spd distribution provides an excellent route to access the cellular entrapment of plasmid DNA upon applying an electroporation pulse.  相似文献   
57.
The effect of SDS, pD, and temperature on the structure and stability of the protein disulfide oxidoreductase from Pyrococcus furiosus (PfPDO) was investigated by molecular dynamic (MD) simulations and FT-IR spectroscopy. pD affects the thermostability of alpha-helices and beta-sheets differently, and 0.5% or higher SDS concentration influences the structure significantly. The experiments allowed us to detect a secondary structural reorganization at a definite temperature and pD which may correlate with a high ATPase activity of the protein. The MD simulations supported the infrared data and revealed the different behavior of the N and C terminal segments, as well as of the two active sites.  相似文献   
58.
The role of the ferroxidase center in iron uptake and hydrogen peroxide detoxification was investigated in Listeria innocua Dps by substituting the iron ligands His31, His43, and Asp58 with glycine or alanine residues either individually or in combination. The X-ray crystal structures of the variants reveal only small alterations in the ferroxidase center region compared to the native protein. Quenching of the protein fluorescence was exploited to assess stoichiometry and affinity of metal binding. Substitution of either His31 or His43 decreases Fe(II) affinity significantly with respect to wt L. innocua Dps (K approximately 10(5) vs approximately 10(7) M(-)(1)) but does not alter the binding stoichiometry [12 Fe(II)/dodecamer]. In the H31G-H43G and H31G-H43G-D58A variants, binding of Fe(II) does not take place with measurable affinity. Oxidation of protein-bound Fe(II) increases the binding stoichiometry to 24 Fe(III)/dodecamer. However, the extent of fluorescence quenching upon Fe(III) binding decreases, and the end point near 24 Fe(III)/dodecamer becomes less distinct with increase in the number of mutated residues. In the presence of dioxygen, the mutations have little or no effect on the kinetics of iron uptake and in the formation of micelles inside the protein shell. In contrast, in the presence of hydrogen peroxide, with increase in the number of substitutions the rate of iron oxidation and the capacity to inhibit Fenton chemistry, thereby protecting DNA from oxidative damage, appear increasingly compromised, a further indication of the role of ferroxidation in conferring peroxide tolerance to the bacterium.  相似文献   
59.
Calreticulin is an endoplasmic reticulum-resident chaperone that is stored in the cytotoxic granules of CTLs and NK cells and is released with granzymes and perforin upon recognition of target cells. To investigate the role of calreticulin in CTL-mediated killing, we generated CTL lines from crt(+/+) and crt(-/-) mice expressing a constitutively active form of calcineurin in the heart. Crt(-/-) CTLs showed reduced cytotoxic activity toward allogeneic target cells despite normal production, intracellular localization, and activity of granzymes and despite perforin overexpression. Comparable or higher amounts of granzymes were degranulated by crt(-/-) cells in response to immobilized anti-CD3 Abs, indicating that calreticulin is dispensable for the signal transduction that leads to granule exocytosis. The ability to form conjugates with target cells was affected in the crt(-/-) CTLs, explaining the observed reduction in cytotoxicity. Conjugate formation and cytotoxicity were completely restored by treatments that facilitate recognition and contact with target cells, a prerequisite for degranulation and killing. Therefore, we conclude that calreticulin is dispensable for the cytolytic activity of granzymes and perforin, but it is required for efficient CTL-target cell interaction and for the formation of the death synapse.  相似文献   
60.
Sertoli cells have long since been recognized for their ability to suppress the immune system and protect themselves as well as other cell types from harmful immune reaction. However, the exact mechanism or product produced by Sertoli cells that affords this immunoprotection has never been fully elucidated. We examined the effect of mouse Sertoli cell-conditioned medium on human granzyme B-mediated killing and found that there was an inhibitory effect. We subsequently found that a factor secreted by Sertoli cells inhibited killing through the inhibition of granzyme B enzymatic activity. SDS-PAGE analysis revealed that this factor formed an SDS-insoluble complex with granzyme B. Immunoprecipitation and mass spectroscopic analysis of the complex identified a proteinase inhibitor, serpina3n, as a novel inhibitor of human granzyme B. We cloned serpina3n cDNA, expressed it in Jurkat cells, and confirmed its inhibitory action on granzyme B activity. Our studies have led to the discovery of a new inhibitor of granzyme B and have uncovered a new mechanism used by Sertoli cells for immunoprotection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号