首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   521篇
  免费   37篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   4篇
  2019年   5篇
  2018年   7篇
  2017年   16篇
  2016年   15篇
  2015年   15篇
  2014年   27篇
  2013年   37篇
  2012年   32篇
  2011年   37篇
  2010年   31篇
  2009年   29篇
  2008年   28篇
  2007年   31篇
  2006年   34篇
  2005年   24篇
  2004年   23篇
  2003年   25篇
  2002年   20篇
  2001年   4篇
  2000年   7篇
  1999年   2篇
  1998年   14篇
  1997年   7篇
  1996年   6篇
  1995年   3篇
  1994年   7篇
  1993年   3篇
  1992年   2篇
  1991年   6篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   4篇
  1979年   5篇
  1977年   1篇
  1976年   4篇
  1974年   4篇
  1973年   2篇
  1970年   1篇
  1967年   1篇
排序方式: 共有558条查询结果,搜索用时 281 毫秒
41.
42.
43.
The proteasomal lid subunit Rpn11 is essential for maintaining a correct cell cycle and mitochondrial morphology in Saccharomyces cerevisiae. In this paper, we show that the rpn11-m1 mutant has a peculiar cell cycle defect reminiscent of mutants defective in the FEAR pathway that delay the release of the Cdc14 protein phosphatase from the nucleolus. We analyzed the rpn11-m1 phenotypes and found that overexpression of Cdc14 suppresses all the rpn11-m1 defects, including the mitochondrial ones. Suppression by Cdc14 of the rpn11-m1 mitochondrial morphology defect reveals an uncharacterized connection between mitochondrial and cell cycle events. Interestingly, the overexpression of Cdc14 also partially restores the tubular network in an Δmmm2 strain, which lacks a mitochondrial protein belonging to the complex necessary to anchor the mitochondrion to the actin cytoskeleton. Altogether our findings indicate, for the first time, a cross-talk between the cell cycle and mitochondrial morphology.  相似文献   
44.
A defective expression or activity of neurotrophic factors, such as brain‐ and glial‐derived neurotrophic factors, contributes to neuronal damage in Huntington’s disease (HD). Here, we focused on transforming growth factor‐β (TGF‐β1), a pleiotropic cytokine with an established role in mechanisms of neuroprotection. Asymptomatic HD patients showed a reduction in TGF‐β1 levels in the peripheral blood, which was related to trinucleotide mutation length and glucose hypometabolism in the caudate nucleus. Immunohistochemical analysis in post‐mortem brain tissues showed that TGF‐β1 was reduced in cortical neurons of asymptomatic and symptomatic HD patients. Both YAC128 and R6/2 HD mutant mice showed a reduced expression of TGF‐β1 in the cerebral cortex, localized in neurons, but not in astrocytes. We examined the pharmacological regulation of TGF‐β1 formation in asymptomatic R6/2 mice, where blood TGF‐β1 levels were also reduced. In these R6/2 mice, both the mGlu2/3 metabotropic glutamate receptor agonist, LY379268, and riluzole failed to increase TGF‐β1 formation in the cerebral cortex and corpus striatum, suggesting that a defect in the regulation of TGF‐β1 production is associated with HD. Accordingly, reduced TGF‐β1 mRNA and protein levels were found in cultured astrocytes transfected with mutated exon 1 of the human huntingtin gene, and in striatal knock‐in cell lines expressing full‐length huntingtin with an expanded glutamine repeat. Taken together, our data suggest that serum TGF‐β1 levels are potential biomarkers of HD development during the asymptomatic phase of the disease, and raise the possibility that strategies aimed at rescuing TGF‐β1 levels in the brain may influence the progression of HD.  相似文献   
45.
Little more than 30 years since the discovery of the Archaea, over one hundred archaeal genome sequences are now publicly available, of which ~40% have been released in the last two years. Their analysis provides an increasingly complex picture of archaeal phylogeny and evolution with the proposal of new major phyla, such as the Thaumarchaeota, and important information on the evolution of key central cellular features such as cell division. Insights have been gained into the events and processes in archaeal evolution, with a number of additional and unexpected links to the Eukaryotes revealed. Taken together, these results predict that many more surprises will be found as new archaeal genomes are sequenced.  相似文献   
46.
Mutations of human leucine-rich glioma inactivated (LGI1) gene encoding the epitempin protein cause autosomal dominant temporal lateral epilepsy (ADTLE), a rare familial partial epileptic syndrome. The LGI1 gene seems to have a role on the transmission of neuronal messages but the exact molecular mechanism remains unclear. In contrast to other genes involved in epileptic disorders, epitempin shows no homology with known ion channel genes but contains two domains, composed of repeated structural units, known to mediate protein-protein interactions.A three dimensional in silico model of the two epitempin domains was built to predict the structure-function relationship and propose a functional model integrating previous experimental findings. Conserved and electrostatic charged regions of the model surface suggest a possible arrangement between the two domains and identifies a possible ADAM protein binding site in the β-propeller domain and another protein binding site in the leucine-rich repeat domain. The functional model indicates that epitempin could mediate the interaction between proteins localized to different synaptic sides in a static way, by forming a dimer, or in a dynamic way, by binding proteins at different times.The model was also used to predict effects of known disease-causing missense mutations. Most of the variants are predicted to alter protein folding while several other map to functional surface regions. In agreement with experimental evidence, this suggests that non-secreted LGI1 mutants could be retained within the cell by quality control mechanisms or by altering interactions required for the secretion process.  相似文献   
47.
48.
One of the most important outcomes of modern biology has been the demonstration of the unity of life. All living beings are in fact descendants of a unique ancestor commonly referred to as Luca (the Last universal common ancestor). The discovery - nearly 30 years ago by Carl Woese - that present-day life on our planet can be assigned to only three domains: two of prokaryotic nature (Archaea and Bacteria), and one eukaryoyic (Eucarya), has given birth to a new field of investigation aimed at determining the nature of Luca. Today, thanks to the accumulation of genomic data, we can loop back into the past and infer a few characters of Luca by comparing what present-day organisms have in common. For example, it is now clear that Luca was a cellular organism provided with a cytoplasmic membrane, and that it harboured already a quite sophisticated translation apparatus. However, the inference of other characters of Luca from comparative genomics is less straightforward: for instance, a few key molecular mechanisms for DNA replication are non-homologous across the three domains and their distribution is often puzzling. This evidence has been embraced by proponents of the hypothesis that Luca harboured an RNA genome and that its replacement by DNA and the appearance of the corresponding molecular systems would have occurred independently in the three life domains after their divergence. However, an equally likely scenario would be that of a Luca with a DNA genome and of a subsequent replacement of its DNA-replication systems by non-homologous counterparts either in the bacterial or in the archaeal/eukaroytic branch. Nevertheless, including the viral world into the picture of the tree of life may thus provide us with precious insights into our most distant past since the invention and spread potential of viruses may have played a key role in early evolution.  相似文献   
49.
In pursuing research on the antiviral, interferon (IFN)-inducing tilorone congeners, a new series of fluoren-carboxyhydroxyesters has been prepared and biologically explored. These esters have subsequently been used as sugar acceptors in the enzymatic transglycosylation reaction using the 'retaining' beta-glycosidase from the archaeon Sulfolobus solfataricus (Ssbeta-Gly). Both aglycones (1-6) and corresponding beta-glucosides (beta-glu 1-beta-glu 6) have been screened for cytotoxicity, interferon-stimulating and antiviral properties against HSV-2. It was found that the addition of compounds beta-glu 5, beta-glu 6 and beta-glu 4 to HSV-2 infected U937 cells downregulates viral replication and triggers cells to release IFN-alpha/beta. Taken together, the results showed improved pharmacological profiles as a consequence of glycosylation. A molecular modelling study carried out on this series of compounds completed the structural characterisation of the novel compounds.  相似文献   
50.

Background  

Cultivable archaeal species are assigned to two phyla - the Crenarchaeota and the Euryarchaeota - by a number of important genetic differences, and this ancient split is strongly supported by phylogenetic analysis. The recently described hyperthermophile Nanoarchaeum equitans, harboring the smallest cellular genome ever sequenced (480 kb), has been suggested as the representative of a new phylum - the Nanoarchaeota - that would have diverged before the Crenarchaeota/Euryarchaeota split. Confirming the phylogenetic position of N. equitans is thus crucial for deciphering the history of the archaeal domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号