首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4202篇
  免费   285篇
  国内免费   1篇
  4488篇
  2023年   28篇
  2022年   66篇
  2021年   130篇
  2020年   63篇
  2019年   84篇
  2018年   135篇
  2017年   100篇
  2016年   142篇
  2015年   227篇
  2014年   271篇
  2013年   347篇
  2012年   403篇
  2011年   362篇
  2010年   223篇
  2009年   185篇
  2008年   242篇
  2007年   260篇
  2006年   211篇
  2005年   186篇
  2004年   175篇
  2003年   137篇
  2002年   115篇
  2001年   25篇
  2000年   24篇
  1999年   33篇
  1998年   19篇
  1997年   18篇
  1996年   12篇
  1995年   21篇
  1994年   13篇
  1993年   21篇
  1992年   17篇
  1991年   13篇
  1990年   10篇
  1989年   16篇
  1988年   7篇
  1987年   6篇
  1986年   8篇
  1985年   16篇
  1984年   8篇
  1983年   11篇
  1982年   6篇
  1981年   8篇
  1980年   6篇
  1979年   10篇
  1978年   9篇
  1977年   8篇
  1975年   6篇
  1974年   7篇
  1973年   12篇
排序方式: 共有4488条查询结果,搜索用时 15 毫秒
31.
32.
Central Amazon Floodplain Forests: Root Adaptations to Prolonged Flooding   总被引:5,自引:0,他引:5  
The floodplains of Central Amazonia represent a complex system of inundated river valleys and shallow lakes along the Solimões–Amazonas river, which is subjected to an annual flood-pulse lasting up to 10 months. Such flooding reaching an amplitude of about ten meters causes dramatic changes in the bioavailability of nutrients and oxygen levels and poses extreme constraints for plant survival and reproductivity. Tree species of inundation forests in Central Amazonia had to evolve adaptive mechanisms to both desiccation of soils and partial or full submergence. To adapt to flooded conditions, some trees overcome the flood period by dormancy accompanied by defoliation and formation of annual rings in the wood. Other species maintain metabolism and retain the foliage during the flooding, representing another adaptive mechanism to low oxygen availability. This investigation focused on the root physiology and morphology of six species typical of white-water inundation areas (várzea) led to a preliminary classification of adaptive strategies of trees inhabiting forest communities in floodplains of the Amazon basin.  相似文献   
33.
In order to proceed through their life cycle, protozoan parasites of the genus Leishmania cycle between sandflies and mammals. This change of environment correlates with the differentiation from the promastigote stage (insect form) to the amastigote stage (intracellular mammalian form). The molecular basis underlying this major transformation is poorly understood so far; however, heat shock protein 90 (HSP90) appears to play a pivotal role. To further elucidate this process we identified proteins expressed preferentially in either of the two life cycle stages. By using two-dimensional (2-D) gel electrophoresis we observed defined changes in the protein pattern. A total of approximately 2000 protein spots were visualized. Of these, 31 proteins were present only in promastigotes. The abundance of 65 proteins increased during heat-induced in vitro amastigote differentiation, while a decreased abundance is observed for four proteins late in amastigote differentiation. Further analyses using matrix-assisted laser desorption/ionization-time of flight mass spectrometry and peptide mass fingerprinting 67 protein spots were identified representing 41 different proteins known from databases and eight hypothetical proteins. Further studies showed that most of the stage-specific proteins fall into five groups of functionally related proteins. These functional categories are: (i) stress response (e.g. heat, oxidative stress); (ii) cytoskeleton and cell membrane; (iii) energy metabolism and phosphorylation; (iv) cell cycle and proliferation; and (v) amino acid metabolism. Very similar changes in the 2-D protein pattern were obtained when in vitro amastigote differentiation was induced either by pharmacological inhibition of HSP90 or by a combination of heat stress and acidic pH supporting the critical role for HSP90 in life cycle control.  相似文献   
34.
Studies assessing the effect and mechanism of probiotics on diseases of the upper gastrointestinal tract (GI) including gastric ulcers are limited despite extensive work and promising results of this therapeutic option for other GI diseases. In this study, we investigated the mechanisms by which the probiotic mixture VSL#3 (a mixture of eight probiotic bacteria including Lactobacilli, Bifidobacteria and Streptococcus species) heals acetic acid induced gastric ulcer in rats. VSL#3 was administered orally at low (6×109 bacteria) or high (1.2×1010 bacteria) dosages from day 3 after ulcer induction for 14 consecutive days. VSL#3 treatments significantly enhanced gastric ulcer healing in a dose-dependent manner. To assess the mechanism(s) whereby VSL#3 exerted its protective effects, we quantified the gene expression of several pro-inflammatory cytokines, protein and expression of stomach mucin-Muc5ac, regulatory cytokine-IL-10, COX-2 and various growth factors. Of all the components examined, only expression and protein production of VEGF was increased 332-fold on day 7 in the ulcerated tissues of animals treated with VSL#3. Predictably, animals treated with VEGF neutralizing antibody significantly delayed gastric ulcer healing in VSL#3 treated animals. This is the first report to demonstrate high efficacy of the probiotic mixture VSL#3 in enhancing gastric ulcer healing. Probiotic efficacy was effective at higher concentrations of VSL#3 by specifically increasing the expression and production of angiogenesis promoting growth factors, primarily VEGF.  相似文献   
35.
36.
Redox modulation is a general mechanism for enzyme regulation, particularly for the post-translational regulation of the Calvin cycle in chloroplasts of green plants. Although red algae and photosynthetic protists that harbor plastids of red algal origin contribute greatly to global carbon fixation, relatively little is known about post-translational regulation of chloroplast enzymes in this important group of photosynthetic eukaryotes. To address this question, we used biochemistry, phylogenetics and analysis of recently completed genome sequences. We studied the functionality of the chloroplast enzymes phosphoribulokinase (PRK, EC 2.7.1.19), NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (NADP-GAPDH, GapA, EC 1.2.1.13), fructose 1,6-bisphosphatase (FBPase, EC 3.1.3.11) and glucose 6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49), as well as NADP-malate dehydrogenase (NADP-MDH, EC 1.1.1.37) in the unicellular red alga Galdieria sulphuraria (Galdieri) Merola. Despite high sequence similarity of G. sulphuraria proteins to those of other photosynthetic organisms, we found a number of distinct differences. Both PRK and GAPDH co-eluted with CP12 in a high molecular weight complex in the presence of oxidized glutathione, although Galdieria CP12 lacks the two cysteines essential for the formation of the N-terminal peptide loop present in higher plants. However, PRK inactivation upon complex formation turned out to be incomplete. G6PDH was redox modulated, but remained in its tetrameric form; FBPase was poorly redox regulated, despite conservation of the two redox-active cysteines. No indication for the presence of plastidic NADP-MDH (and other components of the malate valve) was found.  相似文献   
37.
Aflatoxins (AF) are contaminants of improperly stored foods; they are potent genotoxic and carcinogenic compounds, exerting their effects through damage to DNA. They can also induce mutations that increase oxidative damage. The goal of this study was to evaluate the possibility that a third mechanism could be involved in the carcinogenic action of aflatoxins, namely, direct binding to key enzymes involved in the regulatory pathways of the cell cycle, thereby modulating enzyme functionality. The 20S constitutive and immunoproteasome peptidase and proteolytic activities were assayed in the presence of aflatoxins B1, G1 and M1. All three toxins activated multiple peptidase activities of the proteasome. Aflatoxin (AF) M1 was the most potent activator of proteasome activity, while the constitutive 20S proteasome was specifically stimulated by AFG1. Furthermore, the effects of AFB1 on cultured hepatoma cells were investigated and the various proteasomal activities determined with cell lysates were differently affected. Taking into account the key role of the proteasome in cellular defense against oxidative stress, the carbonyl group content and the activities of antioxidant enzymes in cell lysates were analyzed. The proapoptotic effect of AFB1 was also investigated by measuring caspase-3 activity and cellular levels of p27 and IkappaBalpha.  相似文献   
38.
Luminescent conjugated polymers (LCPs) interact with ordered protein aggregates and sensitively detect amyloids of many different proteins, suggesting that they may possess antiprion properties. Here, we show that a variety of anionic, cationic, and zwitterionic LCPs reduced the infectivity of prion-containing brain homogenates and of prion-infected cerebellar organotypic cultured slices and decreased the amount of scrapie isoform of PrP(C) (PrP(Sc)) oligomers that could be captured in an avidity assay. Paradoxically, treatment enhanced the resistance of PrP(Sc) to proteolysis, triggered the compaction, and enhanced the resistance to proteolysis of recombinant mouse PrP(23-231) fibers. These results suggest that LCPs act as antiprion agents by transitioning PrP aggregates into structures with reduced frangibility. Moreover, ELISA on cerebellar organotypic cultured slices and in vitro conversion assays with mouse PrP(23-231) indicated that poly(thiophene-3-acetic acid) may additionally interfere with the generation of PrP(Sc) by stabilizing the conformation of PrP(C) or of a transition intermediate. Therefore, LCPs represent a novel class of antiprion agents whose mode of action appears to rely on hyperstabilization, rather than destabilization, of PrP(Sc) deposits.  相似文献   
39.
Because tumors and other diseases are characterized by increased heparanase levels, human heparanase is a promising drug target and diagnostic marker. Therefore, methods are needed to determine heparanase activity and to examine potential inhibitors. Because of substrate comparability, we used the bacterial enzyme heparinase II (heparinase) for the assay development. Usually the substrate of heparanase assays is heparan sulfate, which has several disadvantages. Because of that, we used fondaparinux, which is being cleaved by both heparanase and heparinase. Two concepts to detect its degradation were examined: measurement of anti-factor Xa activity of fondaparinux and its direct quantification with the fluorescent sensor polymer-H. Using fondaparinux as substrate, the anti-factor Xa assay was shsown to be appropriate to determine heparinase activity. The detection with polymer-H was easier and even faster to perform. Linearity was given with fondaparinux as well as heparan sulfate, and heparin as substrates, but fondaparinux turned out to be most suitable. By modifications (incubation time, fondaparinux concentration, and polymer-H concentration), the limit of quantification and the linear range can be adapted to the respective requirements. In conclusion, a simple, accurate, and robust heparinase assay was developed. It is suitable for heparinase quality control and testing heparinase inhibitors and could be adapted to heparanase.  相似文献   
40.
Human serum albumin (HSA) is an abundant plasma protein that transports fatty acids and also binds a wide variety of hydrophobic pharmacores. Echo-detected (ED) EPR spectra and D(2)O-electron spin echo envelope modulation (ESEEM) Fourier-transform spectra of spin-labelled free fatty acids and phospholipids were used jointly to investigate the binding of stearic acid to HSA and the adsorption of the protein on dipalmitoyl phosphatidylcholine (DPPC) membranes. In membranes, torsional librations are detected in the ED-spectra, the intensity of which depends on chain position at low temperature. Water penetration into the membrane is seen in the D(2)O-ESEEM spectra, the intensity of which decreases greatly at the middle of the membrane. Both the chain librational motion and the water penetration are only little affected by adsorption of serum albumin at the DPPC membrane surface. In contrast, both the librational motion and the accessibility of the chains to water are very different in the hydrophobic fatty acid binding sites of HSA from those in membranes. Indeed, the librational motion of bound fatty acids is suppressed at low temperature, and is similar for the different chain positions, at all temperatures. Correspondingly, all segments of the bound chains are accessible to water, to rather similar extents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号