首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6042篇
  免费   418篇
  国内免费   1篇
  2023年   41篇
  2022年   101篇
  2021年   225篇
  2020年   111篇
  2019年   148篇
  2018年   208篇
  2017年   153篇
  2016年   219篇
  2015年   359篇
  2014年   410篇
  2013年   505篇
  2012年   598篇
  2011年   526篇
  2010年   320篇
  2009年   267篇
  2008年   347篇
  2007年   343篇
  2006年   282篇
  2005年   244篇
  2004年   234篇
  2003年   181篇
  2002年   144篇
  2001年   35篇
  2000年   30篇
  1999年   35篇
  1998年   24篇
  1997年   22篇
  1996年   19篇
  1995年   22篇
  1994年   15篇
  1993年   24篇
  1992年   22篇
  1991年   13篇
  1990年   15篇
  1989年   20篇
  1988年   11篇
  1986年   8篇
  1985年   27篇
  1984年   12篇
  1983年   13篇
  1982年   7篇
  1981年   8篇
  1980年   9篇
  1979年   11篇
  1978年   9篇
  1977年   10篇
  1976年   8篇
  1975年   8篇
  1974年   10篇
  1973年   12篇
排序方式: 共有6461条查询结果,搜索用时 922 毫秒
71.
Climate change is currently affecting both biodiversity and human activities; land use change and greenhouse gas emissions are the main drivers. Many agricultural services are affected by the change, which in turn reflects on the basic provisioning services, which supply food, fibre and biofuels. Biofuels are getting increasing interest because of their sustainability potential. Jatropha curcas gained popularity as a biodiesel crop, due to its ease of cultivation even in harsh environmental conditions. Notwithstanding its high economic importance, few studies are available about its co‐occurrence with pests of the genus Aphthona in sub‐Saharan Africa, where these insects feed on J. curcas, leading to relevant economic losses. Using ecological niche modelling and GIS post‐modelling analyses, we infer the current and future suitable territories for both these taxa, delineating areas where J. curcas cultivations may occur without suffering the presence of Aphthona, in the context of future climate and land use changing. We introduce an area‐normalized index, the ‘Potential‐Actual Cultivation Index’, to better depict the ratio between the suitable areas shared both by the crop and its pest, and the number of actual cultivations, in a target country. Moreover, we find high economic losses (~?50%) both in terms of carbon sequestration and in biodiesel production when J. curcas co‐occur with the Aphthona cookei species group.  相似文献   
72.
73.
The understanding of global diversity patterns has benefitted from a focus on functional traits and how they relate to variation in environmental conditions among assemblages. Distant communities in similar environments often share characteristics, and for tropical forest mammals, this functional trait convergence has been demonstrated at coarse scales (110–200 km resolution), but less is known about how these patterns manifest at fine scales, where local processes (e.g. habitat features and anthropogenic activities) and biotic interactions occur. Here, we used standardized camera trapping data and a novel analytical method that accounts for imperfect detection to assess how the functional composition of terrestrial mammal communities for two traits – trophic guild and body mass – varies across 16 protected areas in tropical forests and three continents, in relation to the extent of protected habitat and anthropogenic pressures. We found that despite their taxonomic differences, communities generally have a consistent trophic guild composition, and respond similarly to these factors. Insectivores were found to be sensitive to the size of protected habitat and surrounding human population density. Body mass distribution varied little among communities both in terms of central tendency and spread, and interestingly, community average body mass declined with proximity to human settlements. Results indicate predicted trait convergence among assemblages at the coarse scale reflects consistent functional composition among communities at the local scale, suggesting that broadly similar habitats and selective pressures shaped communities with similar trophic strategies and responses to drivers of change. These similarities provide a foundation for assessing assemblages under anthropogenic threats and sharing conservation measures.  相似文献   
74.
Bacterial flagellar motility is controlled by the binding of CheY proteins to the cytoplasmic switch complex of the flagellar motor, resulting in changes in swimming speed or direction. Despite its importance for motor function, structural information about the interaction between effector proteins and the motor are scarce. To address this gap in knowledge, we used electron cryotomography and subtomogram averaging to visualize such interactions inside Caulobacter crescentus cells. In C. crescentus, several CheY homologs regulate motor function for different aspects of the bacterial lifestyle. We used subtomogram averaging to image binding of the CheY family protein CleD to the cytoplasmic Cring switch complex, the control center of the flagellar motor. This unambiguously confirmed the orientation of the motor switch protein FliM and the binding of a member of the CheY protein family to the outside rim of the C ring. We also uncovered previously unknown structural elaborations of the alphaproteobacterial flagellar motor, including two novel periplasmic ring structures, and the stator ring harboring eleven stator units, adding to our growing catalog of bacterial flagellar diversity.  相似文献   
75.
In Arabidopsis, stamen elongation, which ensures male fertility, is controlled by the auxin response factor ARF8, which regulates the expression of the auxin repressor IAA19. Here, we uncover a role for light in controlling stamen elongation. By an extensive genetic and molecular analysis we show that the repressor of light signaling COP1, through its targets HY5 and HYH, controls stamen elongation, and that HY5 – oppositely to ARF8 – directly represses the expression of IAA19 in stamens. In addition, we show that in closed flower buds, when light is shielded by sepals and petals, the blue light receptors CRY1/CRY2 repress stamen elongation. Coherently, at flower disclosure and in subsequent stages, stamen elongation is repressed by the red and far‐red light receptors PHYA/PHYB. In conclusion, different light qualities – sequentially perceived by specific photoreceptors – and the downstream COP1–HY5/HYH module finely tune auxin‐induced stamen elongation and thus male fertility.  相似文献   
76.
77.
78.
The gut microbiome of animals, which serves important functions but can also contain potential pathogens, is to varying degrees under host genetic control. This can generate signals of phylosymbiosis, whereby gut microbiome composition matches host phylogenetic structure. However, the genetic mechanisms that generate phylosymbiosis and the scale at which they act remain unclear. Two non‐mutually exclusive hypotheses are that phylosymbiosis is driven by immunogenetic regions such as the major histocompatibility complex (MHC) controlling microbial composition, or by spatial structuring of neutral host genetic diversity via founder effects, genetic drift, or isolation by distance. Alternatively, associations between microbes and host phylogeny may be generated by their spatial autocorrelation across landscapes, rather than the direct effects of host genetics. In this study, we collected MHC, microsatellite, and gut microbiome data from separate individuals belonging to the Galápagos mockingbird species complex, which consists of four allopatrically distributed species. We applied multiple regression with distance matrices and Bayesian inference to test for correlations between average genetic and microbiome similarity across nine islands for which all three levels of data were available. Clustering of individuals by species was strongest when measured with microsatellite markers and weakest for gut microbiome distributions, with intermediate clustering of MHC allele frequencies. We found that while correlations between island‐averaged gut microbiome composition and both microsatellite and MHC dissimilarity existed across species, these relationships were greatly weakened when accounting for geographic distance. Overall, our study finds little support for large‐scale control of gut microbiome composition by neutral or adaptive genetic regions across closely related bird phylogenies, although this does not preclude the possibility that host genetics shapes gut microbiome at the individual level.  相似文献   
79.
Plant Cell, Tissue and Organ Culture (PCTOC) - Steviol glycosides (SGs) and gibberellins (GAs) share the same molecular basis. However, the coordination of their respective biosynthetic pathways is...  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号