首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2195篇
  免费   160篇
  国内免费   1篇
  2024年   1篇
  2023年   11篇
  2022年   33篇
  2021年   57篇
  2020年   17篇
  2019年   42篇
  2018年   81篇
  2017年   50篇
  2016年   71篇
  2015年   105篇
  2014年   128篇
  2013年   172篇
  2012年   189篇
  2011年   201篇
  2010年   133篇
  2009年   111篇
  2008年   121篇
  2007年   165篇
  2006年   142篇
  2005年   119篇
  2004年   110篇
  2003年   110篇
  2002年   83篇
  2001年   24篇
  2000年   5篇
  1999年   10篇
  1998年   12篇
  1997年   6篇
  1996年   3篇
  1995年   8篇
  1994年   2篇
  1993年   6篇
  1992年   5篇
  1990年   2篇
  1988年   4篇
  1987年   6篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有2356条查询结果,搜索用时 218 毫秒
901.
Myelin basic protein (MBP) is one of the best characterized autoantigens causing multiple sclerosis (MS), via a procedure that involves a stable formation of the trimolecular complex of a T-cell Receptor (TCR), an MBP epitope, and the receptor HLA-DR2b. Experimental autoimmune encephalomyelitis (EAE) is considered as an instructive model for MS in humans, and plenty of X-ray data is available for a number of EAE inducing peptide-receptor complexes. To date, though, there are no data available for complexes involving peptides reversing EAE, namely antagonists. Conformational properties of the EAE inducing epitope MBP(87-99) were analyzed in DMSO using the NOE connectivities and vicinal H(N)-H(alpha) coupling constants, and compared with the antagonist altered peptide ligands. A robust method, which is based on a combination of molecular dynamics and energy minimization, is proposed for identifying the putative bioactive conformations. Generated conformations are compared with the known X-ray structure of MBP(83-96) (human sequence numbering) in the HLA-DR2b complex. The structural motif for the agonist-antagonist activity is discussed.  相似文献   
902.
The correlation between protein motions and function is a central problem in protein science. Several studies have demonstrated that ligand binding and protein dynamics are strongly correlated in intracellular lipid binding proteins (iLBPs), in which the high degree of flexibility, principally occurring at the level of helix-II, CD, and EF loops (the so-called portal area), is significantly reduced upon ligand binding. We have recently investigated by NMR the dynamic properties of a member of the iLBP family, chicken liver bile acid binding protein (cL-BABP), in its apo and holo form, as a complex with two bile salts molecules. Binding was found to be regulated by a dynamic process and a conformational rearrangement was associated with this event. We report here the results of molecular dynamics (MD) simulations performed on apo and holo cL-BABP with the aim of further characterizing the protein regions involved in motion propagation and of evaluating the main molecular interactions stabilizing bound ligands. Upon binding, the root mean square fluctuation values substantially decrease for CD and EF loops while increase for the helix-loop-helix region, thus indicating that the portal area is the region mostly affected by complex formation. These results nicely correlate with backbone dynamics data derived from NMR experiments. Essential dynamics analysis of the MD trajectories indicates that the major concerted motions involve the three contiguous structural elements of the portal area, which however are dynamically coupled in different ways whether in the presence or in the absence of the ligands. Motions of the EF loop and of the helical region are part of the essential space of both apo and holo-BABP and sample a much wider conformational space in the apo form. Together with NMR results, these data support the view that, in the apo protein, the flexible EF loop visits many conformational states including those typical of the holo state and that the ligand acts stabilizing one of these pre-existing conformations. The present results, in agreement with data reported for other iLBPs, sharpen our knowledge on the binding mechanism for this protein family.  相似文献   
903.
PURPOSE OF REVIEW: This review summarizes the evidence for benefits of magnesium on metabolic abnormalities, inflammatory parameters, and cardiovascular risk factors and related-potential mechanisms. Controversy due to contrasting results in the literature is also discussed. RECENT FINDINGS: Increased dietary magnesium intake confers protection against the incidence of diabetes, metabolic syndrome, hypertension, and cardiovascular disease. It ameliorates insulin resistance, serum lipid profiles, and lowers inflammation, endothelial dysfunction, oxidative stress, and platelet aggregability. Magnesium acts as a mild calcium antagonist on vascular smooth muscle tone, and on postreceptor insulin signaling; it is critically involved in energy metabolism, fatty acid synthesis, glucose utilization, ATPase functions, release of neurotransmitters, and endothelial cell function and secretion. Prospective studies, however, have found only a modest effect for dietary magnesium on incident pathologies. Furthermore, magnesium supplementation on glucose metabolism, blood lipid levels, and ischemic heart disease has given inconsistent results. SUMMARY: There is strong biological plausibility for the direct impact of magnesium intake on metabolic and cardiovascular risk factors, but in-vivo magnesium deficiency might play only a modest role. Reverse causality, the strong association between magnesium and other beneficial nutrients, or the possibility that people who choose magnesium-rich foods are more health-conscious may be confounding factors.  相似文献   
904.
905.
Binding human serum albumin (HSA) of three polyoxometalates (POMs) with the Wells-Dawson structure, alpha(2)-[P2W17O61]10- (abbreviated as alpha(2)-P2W17) and two of its metal-substituted derivatives, alpha(2)-[NiP2W17O61]8- and alpha(2)-[CuP2W17O61]8- (alpha(2)-P2W17Ni and alpha(2)-P2W17Cu, respectively) was studied in an aqueous medium at pH 7.5. Fluorescence quenching, circular dichroism (CD), thermal denaturation, and isothermal titration calorimetry (ITC) were used for this purpose. The results were compared with those obtained previously with the Keggin structure POM, [H2W12O40]6- (H2W12), and the wheel-shaped structure, [NaP5W30O110]14- (P5W30). All these POMs bind HSA mainly by electrostatic interactions. Comparison of the physical characteristics and HSA interaction parameters for the POMs of the present work and those studied previously showed that the overall charge of the clusters is not the single parameter governing the binding process and its consequences. In contrast, besides the influences of the structure, the dimension and/or weight of the POMs, the results have permitted highlighting of the importance of each POM atomic composition for its binding behavior.  相似文献   
906.
Reports dealing with the stimulus-response relationship between low-level, low-frequency electromagnetic fields (EMFs) and changes in brain electrical activity permit assessment of the hypothesis that EMFs are detected by the body via the process of sensory transduction. These reports, as well as those involving effects on brain activity observed after a fixed time of exposure, are critically reviewed here. A consistent stimulus-response relationship between EMFs and changes in brain activity has been demonstrated in animal and human subjects. The effects, which consisted of onset and offset evoked potentials, were observed under conditions permitting the inference that the fields were transduced like ordinary stimuli such as light and sound. However, unlike the changes in brain activity induced by these stimuli, the changes induced by EMFs were governed by nonlinear laws. The studies involving attempts to determine whether a period of EMF exposure caused a metabolic effect reflected in pre-exposure/post-exposure differences in brain activity were generally inconclusive.  相似文献   
907.
Metabolites of the wood-rotting fungus Stereum subtomentosum Pouzar (Basidiomycetes, order Russulales, family Stereaceae) occurring on birch (Betula pendula Roth) trees were phytochemically investigated for the first time. Three main metabolite chemotypes present in MeOH extracts of the fruit bodies, viz. steroids, fatty acids, and water-soluble sugars, were fractionated, isolated, and identified by 1D/2D NMR-spectroscopic analyses, NMR data comparisons, and chemical correlations combined with GC/MS experiments. Thirteen compounds including two 5 alpha,8 alpha-epidioxy steroids, alpha,alpha'-trehalose, D-arabinitol, D-mannitol, and saturated/unsaturated fatty acids, were identified. Differences among S. subtomentosum and two other birch-associated fungal species, Trametes versicolor (L.: Fr.) Pilát, and Piptoporus betulinus (Bull.: Fr.) P. Karst (Basidiomycetes, order Polyporales, family Polyporaceae) were evaluated as regards the richness and abundance relationships in metabolite profiling.  相似文献   
908.
Different agents able to modulate apoptosis have been shown to modify the expression of the MAP-kinase-phosphatase-1 (MKP-1). The expression of this phosphatase has been considered a potential positive prognostic factor in lung cancer, and smoke was shown to reduce the levels of MKP-1 in ferret lung. Our aim was to assess whether the n-3 polyunsaturated fatty acid docosahexaenoic acid (DHA), known to inhibit the growth of several cancer cells mainly inducing apoptosis, may exert pro-apoptotic effect in lung cancer cells by modifying MKP-1 expression. We observed that DHA increased MKP-1 protein and mRNA expression and induced apoptosis in different lung cancer cell lines (mink Mv1Lu adenocarcinoma cells, human A549 adenocarcinoma and human BEN squamous carcinoma cells). We inhibited the pro-apoptotic effect of DHA by treating the cells with the phosphatase inhibitor Na3VO4 or by silencing the MKP-1 gene with the specific siRNA. This finding demonstrated that the induction of apoptosis by DHA involved a phosphatase activity, specifically that of MKP-1. DHA reduced also the levels of the phosphorylated MAP-kinases, especially ERK1/2 and p38. Such an effect was not observed when the MKP-1 gene was silenced. Altogether, the data provide evidence that the DHA-induced overexpression of MKP-1 and the resulting decrease of MAP-kinase phosphorylation by DHA may underlie the pro-apoptotic effect of this fatty acid in lung cancer cells. Moreover, they support the hypothesis that DHA may exert chemopreventive action in lung cancer.  相似文献   
909.
Transmissible spongiform encephalopathies (TSEs) are a group of diseases of infectious, sporadic and genetic origin, found in higher organisms and caused by the pathological form of the prion protein. The inheritable subgroup of TSEs is linked to insertional or point mutations in the prion gene prnp , which favour its misfolding and are passed on to offspring in an autosomal-dominant fashion. The large majority of patients with these diseases are heterozygous for the prnp gene, leading to the coexpression of the wild-type (wt) (PrPC) and the mutant forms (PrPmut) in the carriers of these mutations. To mimic this situation in vitro , we produced Fischer rat thyroid cells coexpressing PrPwt alongside mutant versions of mouse PrP including A117V, E200K and T182A relevant to the human TSE diseases Gestmann–Sträussler–Scheinker (GSS) disease and familial Creutzfeldt–Jakob disease (fCJD). We found that coexpression of mutant PrP with wt proteins does not affect the glycosylation pattern or the biochemical characteristics of either protein. However, FRET and co-immunoprecipitation experiments suggest an interaction occurring between the wt and mutant proteins. Furthermore, by comparing the intracellular localization and detergent-resistant membrane (DRM) association in single- and double-expressing clones, we found changes in the intracellular/surface ratio and an increased sequestration of both proteins in DRMs, a site believed to be involved in the pathological conversion (or protection thereof) of the prion protein. We, therefore, propose that the mutant forms alter the subcellular localization and the membrane environment of the wt protein in co-transfected cells. These effects may play a role in the development of these diseases.  相似文献   
910.
During photosynthesis, two photoreaction centers located in the thylakoid membranes of the chloroplast, photosystems I and II (PSI and PSII), use light energy to mobilize electrons to generate ATP and NADPH. Different modes of electron flow exist, of which the linear electron flow is driven by PSI and PSII, generating ATP and NADPH, whereas the cyclic electron flow (CEF) only generates ATP and is driven by the PSI alone. Different environmental and metabolic conditions require the adjustment of ATP/NADPH ratios and a switch of electron distribution between the two photosystems. With the exception of PGR5, other components facilitating CEF are unknown. Here, we report the identification of PGRL1, a transmembrane protein present in thylakoids of Arabidopsis thaliana. Plants lacking PGRL1 show perturbation of CEF, similar to PGR5-deficient plants. We find that PGRL1 and PGR5 interact physically and associate with PSI. We therefore propose that the PGRL1-PGR5 complex facilitates CEF in eukaryotes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号