首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2218篇
  免费   162篇
  国内免费   1篇
  2024年   1篇
  2023年   11篇
  2022年   31篇
  2021年   57篇
  2020年   17篇
  2019年   43篇
  2018年   81篇
  2017年   50篇
  2016年   71篇
  2015年   105篇
  2014年   128篇
  2013年   173篇
  2012年   190篇
  2011年   207篇
  2010年   133篇
  2009年   112篇
  2008年   123篇
  2007年   167篇
  2006年   143篇
  2005年   120篇
  2004年   110篇
  2003年   111篇
  2002年   83篇
  2001年   24篇
  2000年   6篇
  1999年   12篇
  1998年   13篇
  1997年   5篇
  1996年   3篇
  1995年   8篇
  1994年   2篇
  1993年   6篇
  1992年   5篇
  1990年   2篇
  1988年   4篇
  1987年   6篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
  1968年   6篇
排序方式: 共有2381条查询结果,搜索用时 15 毫秒
121.
122.
Phosphonoacetamido(oxy) groups have proven to be good mimics of the diphosphate portion in geranylgeranyl protein transferase I (GGTase I) inhibitors. The introduction of small alkyl groups (Me, Et) into the diphosphate mimic moiety caused a further decrease in collateral farnesyl protein transferase (FTase) inhibitory activity, thereby improving GGTase I over FTase selectivity.  相似文献   
123.
The symbiotic soil bacterium Sinorhizobium meliloti uses the compatible solutes glycine betaine and proline betaine for both protection against osmotic stress and, at low osmolarities, as an energy source. A PCR strategy based on conserved domains in components of the glycine betaine uptake systems from Escherichia coli (ProU) and Bacillus subtilis (OpuA and OpuC) allowed us to identify a highly homologous ATP-binding cassette (ABC) binding protein-dependent transporter in S. meliloti. This system was encoded by three genes (hutXWV) of an operon which also contained a fourth gene (hutH2) encoding a putative histidase, which is an enzyme involved in the first step of histidine catabolism. Site-directed mutagenesis of the gene encoding the periplasmic binding protein (hutX) and of the gene encoding the cytoplasmic ATPase (hutV) was done to study the substrate specificity of this transporter and its contribution in betaine uptake. These mutants showed a 50% reduction in high-affinity uptake of histidine, proline, and proline betaine and about a 30% reduction in low-affinity glycine betaine transport. When histidine was used as a nitrogen source, a 30% inhibition of growth was observed in hut mutants (hutX and hutH2). Expression analysis of the hut operon determined using a hutX-lacZ fusion revealed induction by histidine, but not by salt stress, suggesting this uptake system has a catabolic role rather than being involved in osmoprotection. To our knowledge, Hut is the first characterized histidine ABC transporter also involved in proline and betaine uptake.  相似文献   
124.
The individual tryptophanyl contributions to the near-ultraviolet circular dichroic activity of apomyoglobin in its native conformation have been resolved by studying recombinant proteins with single tryptophanyl substitutions. Site-directed mutagenesis of sperm whale apomyoglobin was performed in order to obtain proteins containing only Trp A-5 or Trp A-12. These amino acid substitutions have very little effect on the overall globin fold as indicated by comparing the spectroscopic properties of the mutants with those of the wild type protein. The circular dichroism spectra of the two apomyoglobin mutants in the near ultraviolet were found to be significantly different, both indole residues having significant activity but of opposite sign. In particular, Trp A-5 shows the presence of a main positive peak centered near 294 – 295 nm with a marked shoulder at 285 nm, ascribed to the 1LBtransition. The spectrum of the mutant protein containing only Trp A-12 shows a large negative contribution with a minimum near 283 nm and a marked shoulder at 293 nm. The broadness of the negative contribution exhibited by Trp A-12 suggests that it may originate mainly from the 1LA transition. Received: 17 February 1997 / Accepted: 14 August 1997  相似文献   
125.
It is still unclear whether the exponential rise of atmospheric CO2 concentration has produced a fertilization effect on tropical forests, thus incrementing their growth rate, in the last two centuries. As many factors affect tree growth patterns, short -term studies might be influenced by the confounding effect of several interacting environmental variables on plant growth. Long-term analyses of tree growth can elucidate long-term trends of plant growth response to dominant drivers. The study of annual rings, applied to long tree-ring chronologies in tropical forest trees enables such analysis. Long-term tree-ring chronologies of three widespread African species were measured in Central Africa to analyze the growth of trees over the last two centuries. Growth trends were correlated to changes in global atmospheric CO2 concentration and local variations in the main climatic drivers, temperature and rainfall. Our results provided no evidence for a fertilization effect of CO2 on tree growth. On the contrary, an overall growth decline was observed for all three species in the last century, which appears to be significantly correlated to the increase in local temperature. These findings provide additional support to the global observations of a slowing down of C sequestration in the trunks of forest trees in recent decades. Data indicate that the CO2 increase alone has not been sufficient to obtain a tree growth increase in tropical trees. The effect of other changing environmental factors, like temperature, may have overridden the fertilization effect of CO2.  相似文献   
126.
The secretion of insulin by the pancreas has been the object of much attention over the past several decades. Insulin is known to be secreted by pancreatic β-cells in response to hyperglycemia: its blood concentrations however exhibit both high-frequency (period approx. 10 minutes) and low-frequency oscillations (period approx. 1.5 hours). Furthermore, characteristic insulin secretory response to challenge maneuvers have been described, such as frequency entrainment upon sinusoidal glycemic stimulation; substantial insulin peaks following minimal glucose administration; progressively strengthened insulin secretion response after repeated administration of the same amount of glucose; insulin and glucose characteristic curves after Intra-Venous administration of glucose boli in healthy and pre-diabetic subjects as well as in Type 2 Diabetes Mellitus. Previous modeling of β-cell physiology has been mainly directed to the intracellular chain of events giving rise to single-cell or cell-cluster hormone release oscillations, but the large size, long period and complex morphology of the diverse responses to whole-body glucose stimuli has not yet been coherently explained. Starting with the seminal work of Grodsky it was hypothesized that the population of pancreatic β-cells, possibly functionally aggregated in islets of Langerhans, could be viewed as a set of independent, similar, but not identical controllers (firing units) with distributed functional parameters. The present work shows how a single model based on a population of independent islet controllers can reproduce very closely a diverse array of actually observed experimental results, with the same set of working parameters. The model’s success in reproducing a diverse array of experiments implies that, in order to understand the macroscopic behaviour of the endocrine pancreas in regulating glycemia, there is no need to hypothesize intrapancreatic pacemakers, influences between different islets of Langerhans, glycolitic-induced oscillations or β-cell sensitivity to the rate of change of glycemia.  相似文献   
127.
Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles.Bacterial lipoproteins (Lpps)1 are a subset of membrane proteins that are covalently modified with a lipidic moiety at their N-terminal cysteine residue. It is commonly reported that Lpps of Gram-positive bacteria are processed by two key enzymes; the prolipoprotein diacylglyceryl transferase (Lgt) and the lipoprotein signal peptidase (Lsp). The Lgt enzyme recognizes a so-called lipobox motif in the C-terminal region of the signal peptide of a premature lipoprotein and transfers a diacylglyceryl moiety to the cysteine residue of the lipobox (1), (2). Subsequently, the Lsp enzyme cleaves the signal peptide resulting in a mature Lpp (3), (4). Nevertheless, recent reports have suggested that N-acylation occurs in bacteria that lack the Gram-negative homologous apolipoprotein N-acyltransferase (Lnt) gene responsible for this modification (5, 6), and that Lpp N-terminal could also be modified with an acetyl group in some Gram-positive (7).Lpps have been described as virulence factors because they play critical roles in membrane stabilization, nutrient uptake, antibiotic resistance, bacterial adhesion to host cells, protein maturation and secretion and many of them still have unknown function (8). Several studies have suggested that bacterial Lpps are pathogen-associated molecular patterns (PAMPs) sensed by the mammalian host through Toll-like receptor 2 (TLR2) heterodimerized with TLR1 or TLR6 to induce innate immunity activation and to control adaptive immunity (912). TLR2 plays a critical role in the host response to the Gram-positive bacteria Staphylococcus aureus (13) and Streptococcus agalactiae (14). Although TLR2 has been considered a receptor for various structurally unrelated PAMPs, recent studies have suggested that, via their lipid moiety, bacterial Lpps function as the major, if not the sole, ligand molecules responsible for TLR2 activation (15). Although Gram-negative Lpps have been widely studied, little information is available for Gram-positive Lpps (16) and the ways they are released into the bacterial extracellular compartment and reach the host immune system remain unclear.We focused our attention on Lpps release by Streptococcus pyogenes. This Gram-positive bacterium is an important human pathogen that causes a wide range of diseases from superficial and self-limiting infection, e.g. pharyngitis and impetigo, to more systemic or invasive diseases like necrotizing fasciitis and septicemia (17). Understanding the role of bacterial Lpps in mediating innate and acquired immunity can be instrumental for the therapy and prophylaxis of human S. pyogenes infections. In this study, we showed that in S. pyogenes Lpps are released into the growth medium within vesicle-like structures in minute amounts. Conditions weakening the bacterial cell wall, such as the addition of sublethal concentrations of penicillin to the bacterial growth medium enhanced this phenomenon and allowed the recovery of sufficient material to enable an in-depth characterization. Proteomic analysis of the vesicles revealed that they were almost exclusively constituted of Lpps. A total of 28 Lpps were identified, representing more than 72% of the Lpps predicted from the genome of the strain under investigation. In addition, multiple transmembrane domain proteins were not found in abundance associated to the vesicles, indicating that vesicles were not representative of the bacterial membrane. We defined these vesicles as Lipoprotein-rich Membrane Vesicles (LMVs).Common characteristics are shared between the LMVs and the ExPortal described for the first time by Rosch and Caparon (18). This asymmetric and distinct membrane microdomain has been reported to be enriched in anionic phospholipids and acts in promoting the biogenesis of secreted proteins by coordinating interactions between nascent unfolded secretory proteins and the accessory factors required for their maturation (1921). An association between ExPortal and peptidoglycan synthesis has also been reported (22). Similarly, LMVs are enriched in anionic phosphatidylglycerol, enzymes involved in protein maturation/secretion and cell wall biogenesis, suggesting that LMVs might derive from the ExPortal. Finally, we showed that LMVs do not induce TLR2 activation, indicating that the Lpps did not act as PAMPs when integrated into the LMVs.  相似文献   
128.
Legumes have an intrinsic capacity to accommodate both symbiotic and endophytic bacteria within root nodules. For the symbionts, a complex genetic mechanism that allows mutual recognition and plant infection has emerged from genetic studies under axenic conditions. In contrast, little is known about the mechanisms controlling the endophytic infection. Here we investigate the contribution of both the host and the symbiotic microbe to endophyte infection and development of mixed colonised nodules in Lotus japonicus. We found that infection threads initiated by Mesorhizobium loti, the natural symbiont of Lotus, can selectively guide endophytic bacteria towards nodule primordia, where competent strains multiply and colonise the nodule together with the nitrogen-fixing symbiotic partner. Further co-inoculation studies with the competent coloniser, Rhizobium mesosinicum strain KAW12, show that endophytic nodule infection depends on functional and efficient M. loti-driven Nod factor signalling. KAW12 exopolysaccharide (EPS) enabled endophyte nodule infection whilst compatible M. loti EPS restricted it. Analysis of plant mutants that control different stages of the symbiotic infection showed that both symbiont and endophyte accommodation within nodules is under host genetic control. This demonstrates that when legume plants are exposed to complex communities they selectively regulate access and accommodation of bacteria occupying this specialized environmental niche, the root nodule.  相似文献   
129.

Aim

To compare the prognostic accuracy of six scoring models for up to three-year mortality and rates of hospitalisation due to acute decompensated heart failure (ADHF) in STEMI patients.

Methods and Results

A total of 593 patients treated with primary PCI were evaluated. Prospective follow-up of patients was ≥3 years. Thirty-day, one-year, two-year, and three-year mortality rates were 4.0%, 7.3%, 8.9%, and 10.6%, respectively. Six risk scores—the TIMI score and derived dynamic TIMI, CADILLAC, PAMI, Zwolle, and GRACE—showed a high predictive accuracy for six- and 12-month mortality with area under the receiver operating characteristic curve (AUC) values of 0.73–0.85. The best predictive values for long-term mortality were obtained by GRACE. The next best-performing scores were CADILLAC, Zwolle, and Dynamic TIMI. All risk scores had a lower prediction accuracy for repeat hospitalisation due to ADHF, except Zwolle with the discriminatory capacity for hospitalisation up to two years (AUC, 0.80–0.83).

Conclusions

All tested models showed a high predictive value for the estimation of one-year mortality, but GRACE appears to be the most suitable for the prediction for a longer follow-up period. The tested models exhibited an ability to predict the risk of ADHF, especially the Zwolle model.  相似文献   
130.
Cardiac calsequestrin (CASQ2) contributes to intracellular Ca2+ homeostasis by virtue of its low-affinity/high-capacity Ca2+ binding properties, maintains sarcoplasmic reticulum (SR) architecture and regulates excitation–contraction coupling, especially or exclusively upon β-adrenergic stimulation. Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmogenic disease associated with cardiac arrest in children or young adults. Recessive CPVT variants are due to mutations in the CASQ2 gene. Molecular and ultra-structural properties were studied in hearts of CASQ2R33Q/R33Q and of CASQ2−/− mice from post-natal day 2 to week 8. The drastic reduction of CASQ2-R33Q is an early developmental event and is accompanied by down-regulation of triadin and junctin, and morphological changes of jSR and of SR-transverse-tubule junctions. Although endoplasmic reticulum stress is activated, no signs of either apoptosis or autophagy are detected. The other model of recessive CPVT, the CASQ2−/− mouse, does not display the same adaptive pattern. Expression of CASQ2-R33Q influences molecular and ultra-structural heart development; post-natal, adaptive changes appear capable of ensuring until adulthood a new pathophysiological equilibrium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号