首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14682篇
  免费   1428篇
  国内免费   20篇
  16130篇
  2023年   94篇
  2022年   169篇
  2021年   366篇
  2020年   172篇
  2019年   273篇
  2018年   300篇
  2017年   281篇
  2016年   421篇
  2015年   756篇
  2014年   773篇
  2013年   972篇
  2012年   1163篇
  2011年   1136篇
  2010年   701篇
  2009年   611篇
  2008年   815篇
  2007年   867篇
  2006年   732篇
  2005年   687篇
  2004年   676篇
  2003年   546篇
  2002年   559篇
  2001年   212篇
  2000年   205篇
  1999年   173篇
  1998年   163篇
  1997年   115篇
  1996年   115篇
  1995年   111篇
  1994年   92篇
  1993年   99篇
  1992年   129篇
  1991年   105篇
  1990年   97篇
  1989年   97篇
  1988年   92篇
  1987年   76篇
  1986年   81篇
  1985年   103篇
  1984年   77篇
  1983年   68篇
  1982年   76篇
  1981年   50篇
  1980年   52篇
  1979年   59篇
  1977年   62篇
  1976年   44篇
  1975年   45篇
  1974年   52篇
  1973年   58篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
Interleukin 1 Receptor antagonist (IL-1Ra) is highly elevated in obesity and is widely recognized as an anti-inflammatory cytokine. While the anti-inflammatory role of IL-1Ra in the pancreas is well established, the role of IL-1Ra in other insulin target tissues and the contribution of systemic IL-1Ra levels to the development of insulin resistance remains to be defined. Using antisense knock down of IL-1Ra in vivo, we show that normalization of IL-1Ra improved insulin sensitivity due to decreased inflammation in the liver and improved hepatic insulin sensitivity and these effects were independent of changes in body weight. A similar effect was observed in IL1-R1 KO mice, suggesting that at high concentrations of IL-1Ra typically observed in obesity, IL-1Ra can contribute to the development of insulin resistance in a mechanism independent of IL-1Ra binding to IL-1R1. These results demonstrate that normalization of plasma IL-1Ra concentration improves insulin sensitivity in diet- induced obese mice.  相似文献   
112.
Thioredoxin-interacting protein (Txnip) knockout (TKO) mice exhibit impaired response to fasting. Herein, we showed that activation of adenine monophosphate-activated protein kinase and cellular AMP levels were diminished in the heart and soleus muscle but not in gastrocnemius muscle of fasting TKO mice. Similarly, glycogen content in fasted TKO mice was increased in oxidative muscles but was not different in glycolytic muscles. These data suggest Txnip deficiency has a higher impact on oxidative muscle than glycolytic muscles and provide new insights into the metabolic role of Txnip.  相似文献   
113.
Galactose oxidase (GO) belongs to a class of proteins that self-catalyze assembly of their redox-active cofactors from active site amino acids. Generation of enzymatically active GO appears to require at least four sequential post-translational modifications: cleavage of a secretion signal sequence, copper-dependent cleavage of an N-terminal pro sequence, copper-dependent formation of a C228-Y272 thioether bond, and generation of the Y272 radical. The last two processes were investigated using a truncated protein (termed premat-GO) lacking the pro sequence and purified under copper-free conditions. Reactions of premat-GO with Cu(II) were investigated using optical, EPR, and resonance Raman spectroscopy, SDS-PAGE, and X-ray crystallography. Premat-GO reacted anaerobically with excess Cu(II) to efficiently form the thioether bond but not the Y272 radical. A potential C228-copper coordinated intermediate (lambda max = 406 nm) in the processing reaction, which had not yet formed the C228-Y272 cross-link, was identified from the absorption spectrum. A copper-thiolate protein complex, with copper coordinated to C228, H496, and H581, was also observed in a 3 min anaerobic soak by X-ray crystallography, whereas a 24 h soak revealed the C228-Y272 thioether bond. In solution, addition of oxygenated buffer to premat-GO preincubated with excess Cu(II) generated the Y272 radical state. On the basis of these data, a mechanism for the formation of the C228-Y272 bond and tyrosyl radical generation is proposed. The 406 nm complex is demonstrated to be a catalytically competent processing intermediate under anaerobic conditions. We propose a potential mechanism which is in common with aerobic processing by Cu(II) until the step at which the second electron acceptor is required.  相似文献   
114.

Background  

High-throughput profiling of DNA methylation status of CpG islands is crucial to understand the epigenetic regulation of genes. The microarray-based Infinium methylation assay by Illumina is one platform for low-cost high-throughput methylation profiling. Both Beta-value and M-value statistics have been used as metrics to measure methylation levels. However, there are no detailed studies of their relations and their strengths and limitations.  相似文献   
115.
Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by progressive eyelid drooping, swallowing difficulties and proximal limb weakness. The autosomal dominant form of this disease is caused by a polyalanine expansion from 10 to 12-17 residues, located at the N-terminus of the poly(A)-binding protein nuclear 1 (PABPN1). A distinct pathological hallmark of OPMD is the presence of filamentous intranuclear aggregates in patients' skeletal muscle cells. Wildtype PABPN1 protein is expressed ubiquitously and was shown to be mostly concentrated in discrete nuclear domains called 'speckles'. Using an established cell- culture model, we show that most mutant PABPN1- positive (alanine expanded form) intranuclear aggregates are structures distinct from intranuclear speckles. In contrast, the promyelocytic leukaemia protein, a major component of nuclear bodies, strongly colocalized to intranuclear aggregates of mutant PABPN1. Wildtype PABPN1 can freely shuttle between the nucleus and cytoplasm. We determined whether the nuclear environment is necessary for mutant PABPN1 inclusion formation and cellular toxicity. This was achieved by inactivating the mutant PABPN1 nuclear localization signal and by generating full-length mutant PABPN1 fused to a strong nuclear export sequence. A green fluorescence protein tag inserted at the N-terminus of both wildtype PABPN1 (ala10) and mutant PABPN1 (ala17) proteins allowed us to visualize their subcellular localization. Targeting mutant PABPN1 to the cytoplasm resulted in a significant suppression of both intranuclear aggregates formation and cellular toxicity, two histological consequences of OPMD. Our results indicate that the nuclear localization of mutant PABPN1 is crucial to OPMD pathogenesis.  相似文献   
116.
117.
118.
In the present work, we explore the possibility of introducing selectivity to existing chemotherapeutics via the design of non-pro-drug, bi-functional molecules comprising a microtubule-binding agent and a substrate for a disease-associated kinase. The design, synthesis, and in vitro biological evaluation of paclitaxel-thymidine and vinblastine-thymidine bi-functional conjugates are reported here. This work provides the first account of 'kinase-mediated trapping' of cancer therapeutics.  相似文献   
119.
120.
NupG from Escherichia coli is the archetype of a family of nucleoside transporters found in several eubacterial groups and has distant homologues in eukaryotes, including man. To facilitate investigation of its molecular mechanism, we developed methods for expressing an oligohistidine-tagged form of NupG both at high levels (>20% of the inner membrane protein) in E. coli and in Xenopus laevis oocytes. In E. coli recombinant NupG transported purine (adenosine) and pyrimidine (uridine) nucleosides with apparent K(m) values of approximately 20-30 microM and transport was energized primarily by the membrane potential component of the proton motive force. Competition experiments in E. coli and measurements of uptake in oocytes confirmed that NupG was a broad-specificity transporter of purine and pyrimidine nucleosides. Importantly, using high-level expression in E. coli and magic-angle spinning cross-polarization solid-state nuclear magnetic resonance, we have for the first time been able directly to measure the binding of the permeant ([1'-(13)C]uridine) to the protein and to assess its relative mobility within the binding site, under non-energized conditions. Purification of over-expressed NupG to near homogeneity by metal chelate affinity chromatography, with retention of transport function in reconstitution assays, was also achieved. Fourier transform infrared and circular dichroism spectroscopy provided further evidence that the purified protein retained its 3D conformation and was predominantly alpha-helical in nature, consistent with a proposed structure containing 12 transmembrane helices. These findings open the way to elucidating the molecular mechanism of transport in this key family of membrane transporters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号