首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16716篇
  免费   1703篇
  国内免费   20篇
  18439篇
  2023年   100篇
  2022年   180篇
  2021年   391篇
  2020年   190篇
  2019年   287篇
  2018年   318篇
  2017年   297篇
  2016年   442篇
  2015年   797篇
  2014年   828篇
  2013年   1056篇
  2012年   1253篇
  2011年   1231篇
  2010年   741篇
  2009年   668篇
  2008年   877篇
  2007年   942篇
  2006年   807篇
  2005年   761篇
  2004年   741篇
  2003年   600篇
  2002年   618篇
  2001年   254篇
  2000年   260篇
  1999年   216篇
  1998年   192篇
  1997年   140篇
  1996年   138篇
  1995年   137篇
  1994年   112篇
  1993年   121篇
  1992年   170篇
  1991年   148篇
  1990年   150篇
  1989年   135篇
  1988年   134篇
  1987年   112篇
  1986年   127篇
  1985年   157篇
  1984年   115篇
  1983年   100篇
  1982年   108篇
  1981年   81篇
  1980年   75篇
  1979年   92篇
  1978年   84篇
  1977年   92篇
  1975年   73篇
  1974年   76篇
  1973年   87篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
102.
Peptidoglycan is the major structural component of the Staphylococcus aureus cell wall, in which it maintains cellular integrity, is the interface with the host, and its synthesis is targeted by some of the most crucial antibiotics developed. Despite this importance, and the wealth of data from in vitro studies, we do not understand the structure and dynamics of peptidoglycan during infection. In this study we have developed methods to harvest bacteria from an active infection in order to purify cell walls for biochemical analysis ex vivo. Isolated ex vivo bacterial cells are smaller than those actively growing in vitro, with thickened cell walls and reduced peptidoglycan crosslinking, similar to that of stationary phase cells. These features suggested a role for specific peptidoglycan homeostatic mechanisms in disease. As S. aureus missing penicillin binding protein 4 (PBP4) has reduced peptidoglycan crosslinking in vitro its role during infection was established. Loss of PBP4 resulted in an increased recovery of S. aureus from the livers of infected mice, which coincided with enhanced fitness within murine and human macrophages. Thicker cell walls correlate with reduced activity of peptidoglycan hydrolases. S. aureus has a family of 4 putative glucosaminidases, that are collectively crucial for growth. Loss of the major enzyme SagB, led to attenuation during murine infection and reduced survival in human macrophages. However, loss of the other three enzymes Atl, SagA and ScaH resulted in clustering dependent attenuation, in a zebrafish embryo, but not a murine, model of infection. A combination of pbp4 and sagB deficiencies resulted in a restoration of parental virulence. Our results, demonstrate the importance of appropriate cell wall structure and dynamics during pathogenesis, providing new insight to the mechanisms of disease.  相似文献   
103.
Land plants are characterised by haplo-diploid life cycles, and developing ovules are the organs in which the haploid and diploid generations coexist. Recently it has been shown that hormones such as auxin and cytokinins play important roles in ovule development and patterning. The establishment and regulation of auxin levels in cells is predominantly determined by the activity of the auxin efflux carrier proteins PIN-FORMED (PIN). To study the roles of PIN1 and PIN3 during ovule development we have used mutant alleles of both genes and also perturbed PIN1 and PIN3 expression using micro-RNAs controlled by the ovule specific DEFH9 (DEFIFICENS Homologue 9) promoter. PIN1 down-regulation and pin1-5 mutation severely affect female gametophyte development since embryo sacs arrest at the mono- and/or bi-nuclear stages (FG1 and FG3 stage). PIN3 function is not required for ovule development in wild-type or PIN1-silenced plants. We show that sporophytically expressed PIN1 is required for megagametogenesis, suggesting that sporophytic auxin flux might control the early stages of female gametophyte development, although auxin response is not visible in developing embryo sacs.  相似文献   
104.
105.
An in vitro bioassay has been developed to explore the role of the pollen coating in the pollen/stigma interaction in Brassica oleracea . In the assay, coating is removed from pollen grains, supplemented with protein fractions isolated from coatings of different S (self incompatibility) haplotypes, and then—using micromanipulation—interposed between individual pollen grains and the stigmatic surface. Normally, the coating used is of the same haplotype as the pollen in the experiment—thus constituting an 'extension' of its own coat—but carrying the supplemented protein fractions. Initial experiments confirmed preliminary data that the pollen coating contained the male determinant of self incompatibility (SI); not only did the addition of 'self' coating (i.e. that with the same S -haplotype as the stigma) prevent the success of a compatible cross pollination, but a 'cross' coating (i.e. that with a different S -haplotype from the stigma) could induce the germination and growth of self pollen. Protein supplementation experiments demonstrated that the pollen-held determinant is contained within the water soluble component of the pollen coat, while further analysis revealed that the active molecular species possesses an Mr10 kDa. More extensive fractionation by gel filtration and reverse phase HPLC was used to isolate a family of basic, cysteine-rich proteins (PCP-A: P ollen C oat P roteins-class A)—one of which is known to bind to stigmatically-expressed components of the S -locus in Brassica . Introduction of the PCP-A protein fraction into the bioassay confirmed the male determinant of SI as a protein, and probably a member of the PCP-A protein family.  相似文献   
106.
107.
Calcium is a universal messenger that translates diverse environmental stimuli and developmental cues into specific cellular and developmental responses. While individual fungal species have evolved complex and often unique biochemical and structural mechanisms to exploit specific ecological niches and to adjust growth and development in response to external stimuli, one universal feature to all is that Ca2+-mediated signaling is involved. The lack of a robust method for imaging spatial and temporal dynamics of subcellular Ca2+ (i.e., “Ca2+ signature”), readily available in the plant and animal systems, has severely limited studies on how this signaling pathway controls fungal growth, development, and pathogenesis. Here, we report the first successful expression of a FRET (Förster Resonance Energy Transfer)-based Ca2+ biosensor in fungi. Time-lapse imaging of Magnaporthe oryzae, Fusarium oxysporum, and Fusarium graminearum expressing this sensor showed that instead of a continuous gradient, the cytoplasmic Ca2+ ([Ca2+]c) change occurred in a pulsatile manner with no discernable gradient between pulses, and each species exhibited a distinct Ca2+ signature. Furthermore, occurrence of pulsatile Ca2+ signatures was age and development dependent, and major [Ca2+]c transients were observed during hyphal branching, septum formation, differentiation into specialized plant infection structures, cell–cell contact and in planta growth. In combination with the sequenced genomes and ease of targeted gene manipulation of these and many other fungal species, the data, materials and methods developed here will help understand the mechanism underpinning Ca2+-mediated control of cellular and developmental changes, its role in polarized growth forms and the evolution of Ca2+ signaling across eukaryotic kingdoms.  相似文献   
108.
109.
110.
Corn starches with different amylose/amylopectin ratios (waxy 0/100, normal corn 23/77, Gelose 50 50/50, Gelose 80 80/20) were annealed at below their gelatinization temperatures in excess water. The effects of annealing on the gelatinization and microstructures of the starches were studied using DSC, XRD and a microscope equipped with both normal and polarized light. In addition, a high-pressure DSC pan was used to study the effects of high-temperature annealing on the multiphase transitions of starches with different water contents. The granular size of the starches increased after the annealing process, but the size variation rates were different, with higher amylopectin contents resulting in a higher diameter growth rates and final accretion ratios. DSC results showed that annealing increased the gelatinization enthalpy of the amylose-rich starches. The increased enthalpy was mainly attributed to endotherm G – there were no significant changes to endotherms M1, M2 or Z – indicating that annealing mainly affected the helical length of shorter or sub-optional amylopectins, in particular the amylopectin in amylose-rich starches. The XRD traces of all starches after annealing remained unchanged.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号