首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14680篇
  免费   1428篇
  国内免费   20篇
  16128篇
  2023年   94篇
  2022年   169篇
  2021年   366篇
  2020年   172篇
  2019年   273篇
  2018年   300篇
  2017年   281篇
  2016年   421篇
  2015年   755篇
  2014年   773篇
  2013年   972篇
  2012年   1163篇
  2011年   1136篇
  2010年   701篇
  2009年   611篇
  2008年   815篇
  2007年   867篇
  2006年   732篇
  2005年   687篇
  2004年   676篇
  2003年   546篇
  2002年   559篇
  2001年   212篇
  2000年   205篇
  1999年   172篇
  1998年   163篇
  1997年   115篇
  1996年   115篇
  1995年   111篇
  1994年   92篇
  1993年   99篇
  1992年   129篇
  1991年   105篇
  1990年   97篇
  1989年   97篇
  1988年   92篇
  1987年   76篇
  1986年   81篇
  1985年   103篇
  1984年   77篇
  1983年   68篇
  1982年   76篇
  1981年   50篇
  1980年   52篇
  1979年   59篇
  1977年   62篇
  1976年   44篇
  1975年   45篇
  1974年   52篇
  1973年   58篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
152.
SUMMARY: A combination of bisulfite treatment of DNA and high-throughput sequencing (BS-Seq) can capture a snapshot of a cell's epigenomic state by revealing its genome-wide cytosine methylation at single base resolution. Bismark is a flexible tool for the time-efficient analysis of BS-Seq data which performs both read mapping and methylation calling in a single convenient step. Its output discriminates between cytosines in CpG, CHG and CHH context and enables bench scientists to visualize and interpret their methylation data soon after the sequencing run is completed. Availability and implementation: Bismark is released under the GNU GPLv3+ licence. The source code is freely available from www.bioinformatics.bbsrc.ac.uk/projects/bismark/.  相似文献   
153.
Competitive PCR was used to evaluate the expression of cytokine, granzyme B, and chemokine genes in lymph nodes of macaques recently infected with the simian immunodeficiency virus (SIV) pathogenic molecular clone SIVmac239 (n = 16), the nonpathogenic vaccine strain SIVmac239 delta nef (n = 8), and the nonpathogenic molecular clone SIVmac1A11 (n = 8). For both SIVmac239 and its nef-deleted derivative, strong expression was observed as early as 7 days postinfection for interleukin 1beta (IL-1beta), IL-6, tumor necrosis factor alpha, gamma interferon, and IL-13. The levels of gene induction were equally intense for both viruses despite a lower viral load for SIVmac239 deltanef compared with that for SIVmac239. However, the nature of the cytokine network activation varied with the viral inocula. Primary infection with SIVmac239 was characterized by a higher level of IL-4, IL-10, MIP-1alpha, MIP-1beta, MCP-1, and RANTES gene expression and a lower level of IL-12 and granzyme B gene expression compared with infection with SIVmac239 delta nef. Thus, infection with nef-deleted SIV was associated with a preferential Th1 versus Th2 pattern of cytokine production. Infection with SIVmac1A11 was characterized by a delayed immune response for all markers tested. The unique patterns of cytokine and chemokine gene expression in lymph nodes correlated nicely with the pathogenic potential of the SIV strains used as well as with differences in their ability to serve as protective vaccines.  相似文献   
154.
The dissociation constant (Kd) for CO from neuronal nitric oxide synthase heme in the absence of the substrate and cofactor was less than 10−3 μM. In the presence of

-Arg, it dramatically increased up to 1 μM. In the presence of inhibitors such as NG-nitro-

-arginine methyl ester and 7-nitroindazole (NI), the Kd value further increased up to more than 100 μM. Addition of the cofactor, 5,6,7,8-tetrahydrobiopterin (H4B), increased the Kd value by 10-fold in the presence of

-Arg, whereas it decreased the value to less than one 250th in the presence of NI. Addition of H4B increased the recombination rate constant (kon) for CO by more than two-fold in the presence of

-Arg or N6-(1-iminoethyl)-

-lysine, whereas it decreased the kon value by three-fold in the presence of

-thiocitrulline. Thus, the binding fashion of some of inhibitors, such as NI, may be different from that of

-Arg with respect to the H4B effect.  相似文献   
155.
We present a novel numerical model of the fracture-healing process using interface-capturing techniques, a well-known approach from fields like fluid dynamics, to describe tissue growth. One advantage of this method is its direct connection to experimentally observable parameters, including tissue-growth velocities. In our model, osteogenesis, chondrogenesis and revascularisation are triggered by mechanical stimuli via mechano-transduction based on previously established hypothesis of Claes and Heigele. After experimentally verifying the convergence of the numerical method, we compare the predictions of our model with those of the already established Ulm bone-healing model, which serves as a benchmark, and corroborate our results with existing animal experiments. We demonstrate that the new model can predict the history of the interfragmentary movement and forecast a tissue evolution that appears similar to the experimental results. Furthermore, we compare the relative tissue concentration in the healing domain with outcomes of animal experiments. Finally, we discuss the possible application of the model to new fields, where numerical simulations could also prove beneficial.  相似文献   
156.
NupG from Escherichia coli is the archetype of a family of nucleoside transporters found in several eubacterial groups and has distant homologues in eukaryotes, including man. To facilitate investigation of its molecular mechanism, we developed methods for expressing an oligohistidine-tagged form of NupG both at high levels (>20% of the inner membrane protein) in E. coli and in Xenopus laevis oocytes. In E. coli recombinant NupG transported purine (adenosine) and pyrimidine (uridine) nucleosides with apparent K(m) values of approximately 20-30 microM and transport was energized primarily by the membrane potential component of the proton motive force. Competition experiments in E. coli and measurements of uptake in oocytes confirmed that NupG was a broad-specificity transporter of purine and pyrimidine nucleosides. Importantly, using high-level expression in E. coli and magic-angle spinning cross-polarization solid-state nuclear magnetic resonance, we have for the first time been able directly to measure the binding of the permeant ([1'-(13)C]uridine) to the protein and to assess its relative mobility within the binding site, under non-energized conditions. Purification of over-expressed NupG to near homogeneity by metal chelate affinity chromatography, with retention of transport function in reconstitution assays, was also achieved. Fourier transform infrared and circular dichroism spectroscopy provided further evidence that the purified protein retained its 3D conformation and was predominantly alpha-helical in nature, consistent with a proposed structure containing 12 transmembrane helices. These findings open the way to elucidating the molecular mechanism of transport in this key family of membrane transporters.  相似文献   
157.

Background  

High-throughput protein structure analysis of individual protein domains requires analysis of large numbers of expression clones to identify suitable constructs for structure determination. For this purpose, methods need to be implemented for fast and reliable screening of the expressed proteins as early as possible in the overall process from cloning to structure determination.  相似文献   
158.
Advances in high-throughput sequencing (HTS) have allowed researchers to obtain large amounts of biological sequence information at speeds and costs unimaginable only a decade ago. Phylogenetics, and the study of evolution in general, is quickly migrating towards using HTS to generate larger and more complex molecular datasets. In this paper, we present a method that utilizes microfluidic PCR and HTS to generate large amounts of sequence data suitable for phylogenetic analyses. The approach uses the Fluidigm Access Array System (Fluidigm, San Francisco, CA, USA) and two sets of PCR primers to simultaneously amplify 48 target regions across 48 samples, incorporating sample-specific barcodes and HTS adapters (2,304 unique amplicons per Access Array). The final product is a pooled set of amplicons ready to be sequenced, and thus, there is no need to construct separate, costly genomic libraries for each sample. Further, we present a bioinformatics pipeline to process the raw HTS reads to either generate consensus sequences (with or without ambiguities) for every locus in every sample or—more importantly—recover the separate alleles from heterozygous target regions in each sample. This is important because it adds allelic information that is well suited for coalescent-based phylogenetic analyses that are becoming very common in conservation and evolutionary biology. To test our approach and bioinformatics pipeline, we sequenced 576 samples across 96 target regions belonging to the South American clade of the genus Bartsia L. in the plant family Orobanchaceae. After sequencing cleanup and alignment, the experiment resulted in ~25,300bp across 486 samples for a set of 48 primer pairs targeting the plastome, and ~13,500bp for 363 samples for a set of primers targeting regions in the nuclear genome. Finally, we constructed a combined concatenated matrix from all 96 primer combinations, resulting in a combined aligned length of ~40,500bp for 349 samples.  相似文献   
159.
During biogenesis of the 40S and 60S ribosomal subunits, the pre-40S particles are exported to the cytoplasm prior to final cleavage of the 20S pre-rRNA to mature 18S rRNA. Amongst the factors involved in this maturation step, Fap7 is unusual, as it both interacts with ribosomal protein Rps14 and harbors adenylate kinase activity, a function not usually associated with ribonucleoprotein assembly. Human hFap7 also regulates Cajal body assembly and cell cycle progression via the p53–MDM2 pathway. This work presents the functional and structural characterization of the Fap7–Rps14 complex. We report that Fap7 association blocks the RNA binding surface of Rps14 and, conversely, Rps14 binding inhibits adenylate kinase activity of Fap7. In addition, the affinity of Fap7 for Rps14 is higher with bound ADP, whereas ATP hydrolysis dissociates the complex. These results suggest that Fap7 chaperones Rps14 assembly into pre-40S particles via RNA mimicry in an ATP-dependent manner. Incorporation of Rps14 by Fap7 leads to a structural rearrangement of the platform domain necessary for the pre-rRNA to acquire a cleavage competent conformation.  相似文献   
160.
Multiprotein complexes catalyze vital biological functions in the cell. A paramount objective of the SPINE2 project was to address the structural molecular biology of these multiprotein complexes, by enlisting and developing enabling technologies for their study. An emerging key prerequisite for studying complex biological specimens is their recombinant overproduction. Novel reagents and streamlined protocols for rapidly assembling co-expression constructs for this purpose have been designed and validated. The high-throughput pipeline implemented at IGBMC Strasbourg and the ACEMBL platform at the EMBL Grenoble utilize recombinant overexpression systems for heterologous expression of proteins and their complexes. Extension of the ACEMBL platform technology to include eukaryotic hosts such as insect and mammalian cells has been achieved. Efficient production of large multicomponent protein complexes for structural studies using the baculovirus/insect cell system can be hampered by a stoichiometric imbalance of the subunits produced. A polyprotein strategy has been developed to overcome this bottleneck and has been successfully implemented in our MultiBac baculovirus expression system for producing multiprotein complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号