首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14683篇
  免费   1428篇
  国内免费   20篇
  16131篇
  2023年   94篇
  2022年   169篇
  2021年   366篇
  2020年   172篇
  2019年   273篇
  2018年   300篇
  2017年   281篇
  2016年   421篇
  2015年   756篇
  2014年   773篇
  2013年   972篇
  2012年   1164篇
  2011年   1136篇
  2010年   701篇
  2009年   611篇
  2008年   815篇
  2007年   867篇
  2006年   733篇
  2005年   687篇
  2004年   676篇
  2003年   546篇
  2002年   559篇
  2001年   212篇
  2000年   205篇
  1999年   172篇
  1998年   163篇
  1997年   115篇
  1996年   115篇
  1995年   111篇
  1994年   92篇
  1993年   99篇
  1992年   129篇
  1991年   105篇
  1990年   97篇
  1989年   97篇
  1988年   92篇
  1987年   76篇
  1986年   81篇
  1985年   103篇
  1984年   77篇
  1983年   68篇
  1982年   76篇
  1981年   50篇
  1980年   52篇
  1979年   59篇
  1977年   62篇
  1976年   44篇
  1975年   45篇
  1974年   52篇
  1973年   58篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
92.
Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future.  相似文献   
93.
94.
The giant clam subfamily Tridacninae (family Cardiidae) is an important group of bivalve molluscs found throughout the Red Sea and Indo-Pacific, from East Africa to the Eastern Pacific biogeographic region. The Tridacna genus is currently revised with numerous cryptic species identified with molecular markers. New Tridacna records from the fringe of the known distribution areas are extremely useful to identify genetically unique species, geographic ranges, and to examine processes associated with species differentiation. While Tridacna maxima is abundant in French Polynesia (Central South Pacific Ocean) the larger fluted giant clam Tridacna squamosa was formerly reported only in the Austral Islands in the south. Following a recent survey that spanned 23 islands and atolls of the Society, Tuamotu and Gambier Archipelagos, the presence of T. squamosa between the Cook Islands and Pitcairn Islands is confirmed using both morphological and molecular information, suggesting a relic distribution across the Central Pacific Ocean. Tridacna squamosa is rare, but present throughout Tuamotu and Gambier. However, it remained undetected from the Society Islands, probably due to historical over-fishing. This species is valued by local inhabitants, and is sought after mainly as gifts and also for a limited local shell trade. The rarity of T. squamosa may call for conservation measures in the near future.  相似文献   
95.
Derivatives with scaffolds of 1,3,5-tri-substituted pyrazoline and 1,3,4,5-tetra-substituted pyrazoline were synthesized and tested for their inhibitory effects versus the p53+/+ HCT116 and p53?/? H1299 human tumor cell lines. Several compounds were active against the two cell lines displaying IC50 values in the low micromolar range with a clearly more pronounced effect on the p53+/+ HCT116 cells. The compound class shows excellent developability due to the modular synthesis, allowing independent optimization of all three to four key substituents to improve the properties of the molecules.  相似文献   
96.
Multiple formats are available for engineering of monoclonal antibodies (mAbs) by yeast surface display, but they do not all lead to efficient expression of functional molecules. We therefore expressed four anti-tumor necrosis factor and two anti-IpaD mAbs as single-chain variable fragment (scFv), antigen-binding fragment (Fab) or single-chain Fabs and compared their expression levels and antigen-binding efficiency. Although the scFv and scFab formats are widely used in the literature, 2 of 6 antibodies were either not or weakly expressed. In contrast, all 6 antibodies expressed as Fab revealed strong binding and high affinity, comparable to that of the soluble form. We also demonstrated that the variations in expression did not affect Fab functionality and were due to variations in light chain display and not to misfolded dimers. Our results suggest that Fab is the most versatile format for the engineering of mAbs.  相似文献   
97.
98.
Gene flow in genetically modified wheat   总被引:1,自引:0,他引:1  
Understanding gene flow in genetically modified (GM) crops is critical to answering questions regarding risk-assessment and the coexistence of GM and non-GM crops. In two field experiments, we tested whether rates of cross-pollination differed between GM and non-GM lines of the predominantly self-pollinating wheat Triticum aestivum. In the first experiment, outcrossing was studied within the field by planting "phytometers" of one line into stands of another line. In the second experiment, outcrossing was studied over distances of 0.5-2.5 m from a central patch of pollen donors to adjacent patches of pollen recipients. Cross-pollination and outcrossing was detected when offspring of a pollen recipient without a particular transgene contained this transgene in heterozygous condition. The GM lines had been produced from the varieties Bobwhite or Frisal and contained Pm3b or chitinase/glucanase transgenes, respectively, in homozygous condition. These transgenes increase plant resistance against pathogenic fungi. Although the overall outcrossing rate in the first experiment was only 3.4%, Bobwhite GM lines containing the Pm3b transgene were six times more likely than non-GM control lines to produce outcrossed offspring. There was additional variation in outcrossing rate among the four GM-lines, presumably due to the different transgene insertion events. Among the pollen donors, the Frisal GM line expressing a chitinase transgene caused more outcrossing than the GM line expressing both a chitinase and a glucanase transgene. In the second experiment, outcrossing after cross-pollination declined from 0.7-0.03% over the test distances of 0.5-2.5 m. Our results suggest that pollen-mediated gene flow between GM and non-GM wheat might only be a concern if it occurs within fields, e.g. due to seed contamination. Methodologically our study demonstrates that outcrossing rates between transgenic and other lines within crops can be assessed using a phytometer approach and that gene-flow distances can be efficiently estimated with population-level PCR analyses.  相似文献   
99.
Interleukin 1 Receptor antagonist (IL-1Ra) is highly elevated in obesity and is widely recognized as an anti-inflammatory cytokine. While the anti-inflammatory role of IL-1Ra in the pancreas is well established, the role of IL-1Ra in other insulin target tissues and the contribution of systemic IL-1Ra levels to the development of insulin resistance remains to be defined. Using antisense knock down of IL-1Ra in vivo, we show that normalization of IL-1Ra improved insulin sensitivity due to decreased inflammation in the liver and improved hepatic insulin sensitivity and these effects were independent of changes in body weight. A similar effect was observed in IL1-R1 KO mice, suggesting that at high concentrations of IL-1Ra typically observed in obesity, IL-1Ra can contribute to the development of insulin resistance in a mechanism independent of IL-1Ra binding to IL-1R1. These results demonstrate that normalization of plasma IL-1Ra concentration improves insulin sensitivity in diet- induced obese mice.  相似文献   
100.
Thioredoxin-interacting protein (Txnip) knockout (TKO) mice exhibit impaired response to fasting. Herein, we showed that activation of adenine monophosphate-activated protein kinase and cellular AMP levels were diminished in the heart and soleus muscle but not in gastrocnemius muscle of fasting TKO mice. Similarly, glycogen content in fasted TKO mice was increased in oxidative muscles but was not different in glycolytic muscles. These data suggest Txnip deficiency has a higher impact on oxidative muscle than glycolytic muscles and provide new insights into the metabolic role of Txnip.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号