首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14733篇
  免费   1433篇
  国内免费   20篇
  16186篇
  2023年   94篇
  2022年   169篇
  2021年   369篇
  2020年   174篇
  2019年   275篇
  2018年   300篇
  2017年   284篇
  2016年   422篇
  2015年   757篇
  2014年   775篇
  2013年   974篇
  2012年   1166篇
  2011年   1140篇
  2010年   702篇
  2009年   613篇
  2008年   820篇
  2007年   870篇
  2006年   733篇
  2005年   690篇
  2004年   677篇
  2003年   547篇
  2002年   560篇
  2001年   213篇
  2000年   205篇
  1999年   177篇
  1998年   164篇
  1997年   115篇
  1996年   115篇
  1995年   114篇
  1994年   92篇
  1993年   99篇
  1992年   129篇
  1991年   105篇
  1990年   98篇
  1989年   97篇
  1988年   92篇
  1987年   77篇
  1986年   81篇
  1985年   103篇
  1984年   77篇
  1983年   68篇
  1982年   76篇
  1981年   50篇
  1980年   52篇
  1979年   59篇
  1977年   62篇
  1976年   44篇
  1975年   45篇
  1974年   52篇
  1973年   61篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Peptidoglycan is the major structural component of the Staphylococcus aureus cell wall, in which it maintains cellular integrity, is the interface with the host, and its synthesis is targeted by some of the most crucial antibiotics developed. Despite this importance, and the wealth of data from in vitro studies, we do not understand the structure and dynamics of peptidoglycan during infection. In this study we have developed methods to harvest bacteria from an active infection in order to purify cell walls for biochemical analysis ex vivo. Isolated ex vivo bacterial cells are smaller than those actively growing in vitro, with thickened cell walls and reduced peptidoglycan crosslinking, similar to that of stationary phase cells. These features suggested a role for specific peptidoglycan homeostatic mechanisms in disease. As S. aureus missing penicillin binding protein 4 (PBP4) has reduced peptidoglycan crosslinking in vitro its role during infection was established. Loss of PBP4 resulted in an increased recovery of S. aureus from the livers of infected mice, which coincided with enhanced fitness within murine and human macrophages. Thicker cell walls correlate with reduced activity of peptidoglycan hydrolases. S. aureus has a family of 4 putative glucosaminidases, that are collectively crucial for growth. Loss of the major enzyme SagB, led to attenuation during murine infection and reduced survival in human macrophages. However, loss of the other three enzymes Atl, SagA and ScaH resulted in clustering dependent attenuation, in a zebrafish embryo, but not a murine, model of infection. A combination of pbp4 and sagB deficiencies resulted in a restoration of parental virulence. Our results, demonstrate the importance of appropriate cell wall structure and dynamics during pathogenesis, providing new insight to the mechanisms of disease.  相似文献   
72.
Land plants are characterised by haplo-diploid life cycles, and developing ovules are the organs in which the haploid and diploid generations coexist. Recently it has been shown that hormones such as auxin and cytokinins play important roles in ovule development and patterning. The establishment and regulation of auxin levels in cells is predominantly determined by the activity of the auxin efflux carrier proteins PIN-FORMED (PIN). To study the roles of PIN1 and PIN3 during ovule development we have used mutant alleles of both genes and also perturbed PIN1 and PIN3 expression using micro-RNAs controlled by the ovule specific DEFH9 (DEFIFICENS Homologue 9) promoter. PIN1 down-regulation and pin1-5 mutation severely affect female gametophyte development since embryo sacs arrest at the mono- and/or bi-nuclear stages (FG1 and FG3 stage). PIN3 function is not required for ovule development in wild-type or PIN1-silenced plants. We show that sporophytically expressed PIN1 is required for megagametogenesis, suggesting that sporophytic auxin flux might control the early stages of female gametophyte development, although auxin response is not visible in developing embryo sacs.  相似文献   
73.
An in vitro bioassay has been developed to explore the role of the pollen coating in the pollen/stigma interaction in Brassica oleracea . In the assay, coating is removed from pollen grains, supplemented with protein fractions isolated from coatings of different S (self incompatibility) haplotypes, and then—using micromanipulation—interposed between individual pollen grains and the stigmatic surface. Normally, the coating used is of the same haplotype as the pollen in the experiment—thus constituting an 'extension' of its own coat—but carrying the supplemented protein fractions. Initial experiments confirmed preliminary data that the pollen coating contained the male determinant of self incompatibility (SI); not only did the addition of 'self' coating (i.e. that with the same S -haplotype as the stigma) prevent the success of a compatible cross pollination, but a 'cross' coating (i.e. that with a different S -haplotype from the stigma) could induce the germination and growth of self pollen. Protein supplementation experiments demonstrated that the pollen-held determinant is contained within the water soluble component of the pollen coat, while further analysis revealed that the active molecular species possesses an Mr10 kDa. More extensive fractionation by gel filtration and reverse phase HPLC was used to isolate a family of basic, cysteine-rich proteins (PCP-A: P ollen C oat P roteins-class A)—one of which is known to bind to stigmatically-expressed components of the S -locus in Brassica . Introduction of the PCP-A protein fraction into the bioassay confirmed the male determinant of SI as a protein, and probably a member of the PCP-A protein family.  相似文献   
74.
Calcium is a universal messenger that translates diverse environmental stimuli and developmental cues into specific cellular and developmental responses. While individual fungal species have evolved complex and often unique biochemical and structural mechanisms to exploit specific ecological niches and to adjust growth and development in response to external stimuli, one universal feature to all is that Ca2+-mediated signaling is involved. The lack of a robust method for imaging spatial and temporal dynamics of subcellular Ca2+ (i.e., “Ca2+ signature”), readily available in the plant and animal systems, has severely limited studies on how this signaling pathway controls fungal growth, development, and pathogenesis. Here, we report the first successful expression of a FRET (Förster Resonance Energy Transfer)-based Ca2+ biosensor in fungi. Time-lapse imaging of Magnaporthe oryzae, Fusarium oxysporum, and Fusarium graminearum expressing this sensor showed that instead of a continuous gradient, the cytoplasmic Ca2+ ([Ca2+]c) change occurred in a pulsatile manner with no discernable gradient between pulses, and each species exhibited a distinct Ca2+ signature. Furthermore, occurrence of pulsatile Ca2+ signatures was age and development dependent, and major [Ca2+]c transients were observed during hyphal branching, septum formation, differentiation into specialized plant infection structures, cell–cell contact and in planta growth. In combination with the sequenced genomes and ease of targeted gene manipulation of these and many other fungal species, the data, materials and methods developed here will help understand the mechanism underpinning Ca2+-mediated control of cellular and developmental changes, its role in polarized growth forms and the evolution of Ca2+ signaling across eukaryotic kingdoms.  相似文献   
75.
76.
77.
Corn starches with different amylose/amylopectin ratios (waxy 0/100, normal corn 23/77, Gelose 50 50/50, Gelose 80 80/20) were annealed at below their gelatinization temperatures in excess water. The effects of annealing on the gelatinization and microstructures of the starches were studied using DSC, XRD and a microscope equipped with both normal and polarized light. In addition, a high-pressure DSC pan was used to study the effects of high-temperature annealing on the multiphase transitions of starches with different water contents. The granular size of the starches increased after the annealing process, but the size variation rates were different, with higher amylopectin contents resulting in a higher diameter growth rates and final accretion ratios. DSC results showed that annealing increased the gelatinization enthalpy of the amylose-rich starches. The increased enthalpy was mainly attributed to endotherm G – there were no significant changes to endotherms M1, M2 or Z – indicating that annealing mainly affected the helical length of shorter or sub-optional amylopectins, in particular the amylopectin in amylose-rich starches. The XRD traces of all starches after annealing remained unchanged.  相似文献   
78.
79.

Gliding diatoms foul surfaces by leaving behind ‘trails’ of secreted mucilage. Atomic force microscopy (AFM) used in ‘fluid tapping’ mode enabled the topography of the soft, adhesive trails in the natural hydrated state to be imaged, and without the artefacts resulting from fixation and/or dehydration. Diatom trails consist of a continuous, swollen ridge of material that dominates the trail, as well as a diffuse hydrated mucilage coating observed on either side of the main trail. The main trail material is evenly attached to the coverslip along its entire length, and appears to cure, or become less soft/adhesive, over time. Diatom trails observed with the scanning electron microscope were severely damaged by dehydration, while trails imaged by the AFM in ‘contact’ mode were damaged and/or removed by the action of the cantilever. The AFM used in ‘fluid tapping’ mode is an excellent tool for topographical studies of soft/adhesive biological molecules in the hydrated state, and will have great value for measuring their physical and mechanical properties when operated in ‘force modulation’ mode.  相似文献   
80.
The objective of this study was to evaluate the effects of partially replacing dry ground corn with glycerin on ruminal fermentation using a dual-flow continuous culture system. Six fermenters (1,223 ± 21 ml) were used in a replicated 3x3 Latin square arrangement with three periods of 10 d each, with 7 d for diet adaptation and 3 d for sample collections. All diets contained 75% concentrate and three dietary glycerin levels (0, 15, and 30% on dry matter basis), totaling six replicates per treatment. Fermenters were fed 72 g of dry matter/d equally divided in two meals/d, at 0800 and 2000 h. Solid and liquid dilution rates were adjusted daily to 5.5 and 11%/h, respectively. On d 8, 9, and 10, samples of 500 ml of solid and liquid digesta effluent were mixed, homogenized, and stored at -20°C. Subsamples of 10 ml were collected and preserved with 0.2 mL of a 50% H2SO4 solution for later determination of NH3-N and volatile fatty acids. Microbial biomass was isolated from fermenters for chemical analysis at the end of each experimental period. Data were analyzed using the MIXED procedure in SAS with α = 0.05. Glycerin levels did not affect apparent digestibility of DM (P Lin. = 0.13; P Quad. = 0.40), OM (P Lin. = 0.72; P Quad. = 0.15), NDF (P Lin. = 0.38; P Quad. = 0.50) and ADF (P Lin. = 0.91; P Quad. = 0.18). Also, glycerin inclusion did not affect true digestibility of DM (P Lin. = 0.35; P Quad. = 0.48), and OM (P Lin. = 0.08; P Quad. = 0.19). Concentrations of propionate (P < 0.01) and total volatile fatty acids (P < 0.01) increased linearly and concentrations of acetate (P < 0.01), butyrate (P = 0.01), iso-valerate (P < 0.01), and total branched-chain volatile fatty acids, as well as the acetate: propionate ratio (P < 0.01) decreased with glycerin inclusion. Linear increases on NH3-N concentration in digesta effluent (P < 0.01) and on NH3-N flow (P < 0.01) were observed due to glycerin inclusion in the diets. Crude protein digestibility (P = 0.04) and microbial N flow (P = 0.04) were greater in the control treatment compared with the other treatments and responded quadratically with glycerin inclusion. Furthermore, the inclusion of glycerin linearly decreased (P = 0.02) non-ammonia N flow. Glycerin levels did not affect the flows of total N (P Lin. = 0.79; P Quad. = 0.35), and dietary N (P Lin. = 0.99; P Quad. = 0.07), as well as microbial efficiency (P Lin. = 0.09; P Quad. = 0.07). These results suggest that partially replacing dry ground corn with glycerin may change ruminal fermentation, by increasing total volatile fatty acids, and propionate concentration without affecting microbial efficiency, which may improve glucogenic potential of beef cattle diets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号