首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   7篇
  2022年   1篇
  2021年   2篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   7篇
  2012年   11篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2008年   5篇
  2007年   6篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1992年   1篇
  1991年   3篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1979年   1篇
  1969年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
51.
52.
53.
Olfactory adaptation is a fundamental process for the functioning of the olfactory system, but the underlying mechanisms regulating its occurrence in intact olfactory sensory neurons (OSNs) are not fully understood. In this work, we have combined stochastic computational modeling and a systematic pharmacological study of different signaling pathways to investigate their impact during short-term adaptation (STA). We used odorant stimulation and electroolfactogram (EOG) recordings of the olfactory epithelium treated with pharmacological blockers to study the molecular mechanisms regulating the occurrence of adaptation in OSNs. EOG responses to paired-pulses of odorants showed that inhibition of phosphodiesterases (PDEs) and phosphatases enhanced the levels of STA in the olfactory epithelium, and this effect was mimicked by blocking vesicle exocytosis and reduced by blocking cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and vesicle endocytosis. These results suggest that G-coupled receptors (GPCRs) cycling is involved with the occurrence of STA. To gain insights on the dynamical aspects of this process, we developed a stochastic computational model. The model consists of the olfactory transduction currents mediated by the cyclic nucleotide gated (CNG) channels and calcium ion (Ca2+)-activated chloride (CAC) channels, and the dynamics of their respective ligands, cAMP and Ca2+, and it simulates the EOG results obtained under different experimental conditions through changes in the amplitude and duration of cAMP and Ca2+ response, two second messengers implicated with STA occurrence. The model reproduced the experimental data for each pharmacological treatment and provided a mechanistic explanation for the action of GPCR cycling in the levels of second messengers modulating the levels of STA. All together, these experimental and theoretical results indicate the existence of a mechanism of regulation of STA by signaling pathways that control GPCR cycling and tune the levels of second messengers in OSNs, and not only by CNG channel desensitization as previously thought.  相似文献   
54.
Soluble guanylyl cyclase (sGC) is a cGMP-generating enzyme implicated in the control of smooth muscle tone that also regulates platelet aggregation. Moreover, sGC activation has been shown to reduce leukocyte adherence to the endothelium. Herein, we investigated the expression of sGC in a murine model of LPS-induced lung injury and evaluated the effects of sGC inhibition in the context of acute lung injury (ALI). Lung tissue sGC alpha1 and beta1 subunit protein levels were determined by Western blot and immunohistochemistry, and steady-state mRNA levels for the beta1 subunit were assessed by real-time PCR. LPS inhalation resulted in a decrease in beta1 mRNA levels, as well as a reduction in both sGC subunit protein levels. Decreased alpha1 and beta1 expression was observed in bronchial smooth muscle and epithelial cells. TNF-alpha was required for the LPS-triggered reduction in sGC protein levels, as no change in alpha1 and beta1 levels was observed in TNF-alpha knockout mice. To determine the effects of sGC blockade in LPS-induced lung injury, mice were exposed to 1H-[1,2,4]oxodiazolo[4,3-a]quinoxalin-l-one (ODQ) prior to the LPS challenge. Such pretreatment led to a further increase in total cell number (mainly due to an increase in neutrophils) and protein concentration in the bronchoalveoalar lavage fluid; the effects of ODQ were reversed by a cell-permeable cGMP analog. We conclude that sGC expression is reduced in LPS-induced lung injury, while inhibition of the enzyme with ODQ worsens lung inflammation, suggesting that sGC exerts a protective role in ALI.  相似文献   
55.
DNA microarrays used as 'genomic sensors' have great potential in clinical diagnostics. Biases inherent in random PCR-amplification, cross-hybridization effects, and inadequate microarray analysis, however, limit detection sensitivity and specificity. Here, we have studied the relationships between viral amplification efficiency, hybridization signal, and target-probe annealing specificity using a customized microarray platform. Novel features of this platform include the development of a robust algorithm that accurately predicts PCR bias during DNA amplification and can be used to improve PCR primer design, as well as a powerful statistical concept for inferring pathogen identity from probe recognition signatures. Compared to real-time PCR, the microarray platform identified pathogens with 94% accuracy (76% sensitivity and 100% specificity) in a panel of 36 patient specimens. Our findings show that microarrays can be used for the robust and accurate diagnosis of pathogens, and further substantiate the use of microarray technology in clinical diagnostics.  相似文献   
56.
Type I interferon (IFN) production by plasmacytoid dendritic cells (pDCs) has been mainly studied in the context of Toll-like receptor (TLR) activation. In the current report, we reveal that, in the absence of TLR activation, the integrin-binding SLAYGLR motif of secreted osteopontin (sOpn) induces IFN-β production in murine pDCs. This process is mediated by α4β1 integrin, indicating that integrin triggering may act as a subtle danger signal leading to IFN-β induction. The SLAYGLR-mediated α4 integrin/IFN-β axis is MyD88 independent and operates via a PI3K/mTOR/IRF3 pathway. Consequently, SLAYGLR-treated pDCs produce increased levels of type I IFNs following TLR stimulation. Intratumoral administration of SLAYGLR induces accumulation of IFN-β–expressing pDCs and efficiently suppresses melanoma tumor growth. In this process, pDCs are crucial. Finally, SLAYGLR enhances pDC development from bone marrow progenitors. These findings open new questions on the roles of sOpn and integrin α4 during homeostasis and inflammation. The newly identified integrin/IFN-β axis may be implicated in a wide array of immune responses.  相似文献   
57.
Soluble guanylyl cyclase (sGC) is an enzyme highly expressed in the lung that generates cGMP contributing to airway smooth muscle relaxation. To determine whether the bronchoconstriction observed in asthma is accompanied by changes in sGC expression, we used a well-established murine model of allergic asthma. Histological and biochemical analyses confirmed the presence of inflammation in the lungs of mice sensitized and challenged with ovalbumin (OVA). Moreover, mice sensitized and challenged with OVA exhibited airway hyperreactivity to methacholine inhalation. Steady-state mRNA levels for all sGC subunits (alpha1, alpha2, and beta1) were reduced in the lungs of mice with allergic asthma by 60-80%, as estimated by real-time PCR. These changes in mRNA were paralleled by changes at the protein level: alpha1, alpha2, and beta1 expression was reduced by 50-80% as determined by Western blotting. Reduced alpha1 and beta1 expression in bronchial smooth muscle cells was demonstrated by immunohistochemistry. To study if sGC inhibition mimics the airway hyperreactivity seen in asthma, we treated na?ve mice with a selective sGC inhibitor. Indeed, in mice receiving ODQ the methacholine dose response was shifted to the left. We conclude that sGC expression is reduced in experimental asthma contributing to the observed airway hyperreactivity.  相似文献   
58.
The putative hinge point revealed by the crystal structure of the MthK potassium channel is a glycine residue that is conserved in many ion channels. In high voltage-activated (HVA) Ca(V) channels, the mid-S6 glycine residue is only present in IS6 and IIS6, corresponding to G422 and G770 in Ca(V)1.2. Two additional glycine residues are found in the distal portion of IS6 (Gly(432) and Gly(436) in Ca(V)1.2) to form a triglycine motif unique to HVA Ca(V) channels. Lethal arrhythmias are associated with mutations of glycine residues in the human L-type Ca(2+) channel. Hence, we undertook a mutational analysis to investigate the role of S6 glycine residues in channel gating. In Ca(V)1.2, alpha-helix-breaking proline mutants (G422P and G432P) as well as the double G422A/G432A channel did not produce functional channels. The macroscopic inactivation kinetics were significantly decreased with Ca(V)1.2 wild type > G770A > G422A congruent with G436A > G432A (from the fastest to the slowest). Mutations at position Gly(432) produced mostly nonfunctional mutants. Macroscopic inactivation kinetics were markedly reduced by mutations of Gly(436) to Ala, Pro, Tyr, Glu, Arg, His, Lys, or Asp residues with stronger effects obtained with charged and polar residues. Mutations within the distal GX(3)G residues blunted Ca(2+)-dependent inactivation kinetics and prevented the increased voltage-dependent inactivation kinetics brought by positively charged residues in the I-II linker. In Ca(V)2.3, mutation of the distal glycine Gly(352) impacted significantly on the inactivation gating. Altogether, these data highlight the role of the GX(3)G motif in the voltage-dependent activation and inactivation gating of HVA Ca(V) channels with the distal glycine residue being mostly involved in the inactivation gating.  相似文献   
59.
BackgroundPatients with bronchitis type of chronic obstructive pulmonary disease (COPD) have raised vascular endothelial growth factor (VEGF) levels in induced sputum. This has been associated with the pathogenesis of COPD through apoptotic and oxidative stress mechanisms. Since, chronic airway inflammation is an important pathological feature of COPD mainly initiated by cigarette smoking, aim of this study was to assess smoking as a potential cause of raised airway VEGF levels in bronchitis type COPD and to test the association between VEGF levels in induced sputum and airway inflammation in these patients.Methods14 current smokers with bronchitis type COPD, 17 asymptomatic current smokers with normal spirometry and 16 non-smokers were included in the study. VEGF, IL-8, and TNF-α levels in induced sputum were measured and the correlations between these markers, as well as between VEGF levels and pulmonary function were assessed.ResultsThe median concentrations of VEGF, IL-8, and TNF-α were significantly higher in induced sputum of COPD patients (1,070 pg/ml, 5.6 ng/ml and 50 pg/ml, respectively) compared to nonsmokers (260 pg/ml, 0.73 ng/ml, and 15.4 pg/ml, respectively, p < 0.05) and asymptomatic smokers (421 pg/ml, 1.27 ng/ml, p < 0.05, and 18.6 pg/ml, p > 0.05, respectively). Significant correlations were found between VEGF levels and pack years (r = 0.56, p = 0.046), IL-8 (r = 0.64, p = 0.026) and TNF-α (r = 0.62, p = 0.031) levels both in asymptomatic and COPD smokers (r = 0.66, p = 0.027, r = 0.67, p = 0.023, and r = 0.82, p = 0.002, respectively). No correlation was found between VEGF levels in sputum and pulmonary function parameters.ConclusionVEGF levels are raised in the airways of both asymptomatic and COPD smokers. The close correlation observed between VEGF levels in the airways and markers of airway inflammation in healthy smokers and in smokers with bronchitis type of COPD is suggestive of VEGF as a marker reflecting the inflammatory process that occurs in smoking subjects without alveolar destruction.  相似文献   
60.
Cargo sorting to intraluminal vesicles (ILVs) of multivesicular endosomes is required for lysosome-related organelle (LRO) biogenesis. PMEL-a component of melanocyte LROs (melanosomes)-is sorted to ILVs in an ESCRT-independent manner, where it is proteolytically processed and assembled into functional amyloid fibrils during melanosome maturation. Here we show that the tetraspanin CD63 directly participates in ESCRT-independent sorting of the PMEL luminal domain, but not of traditional ESCRT-dependent cargoes, to ILVs. Inactivating CD63 in cell culture or in mice impairs amyloidogenesis and downstream melanosome morphogenesis. Whereas CD63 is required for normal PMEL luminal domain sorting, the disposal of the remaining PMEL transmembrane fragment requires functional ESCRTs but not CD63. In the absence of CD63, the PMEL luminal domain follows this fragment and is targeted for ESCRT-dependent degradation. Our data thus reveal a tight interplay regulated by CD63 between two distinct endosomal ILV sorting processes for a single cargo during LRO biogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号