首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
  33篇
  2021年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2006年   3篇
  2004年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1995年   2篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
11.
12.
13.
14.
15.
16.
Cholic acid:CoA ligase (EC 6.2.1.7, choloyl-CoA synthetase) and deoxycholic acid:CoA ligase catalyze the synthesis of choloyl-CoA and deoxycholoyl-CoA from their respective bile acids in rat liver. A modification of the phase partition assay was introduced which yields significantly (3-fold) higher specific activities for cholic acid:CoA ligase than previously reported. An independent method of separating choloyl-CoA from the substrates by high-pressure liquid chromatography was also developed and validates the modification. Both enzymic activities were found to be localized predominantly in the endoplasmic reticulum of rat liver. The level of either ligase in other purified, active subcellular fractions is consistent with the level of contamination by endoplasmic reticulum, estimated by using marker enzymes. Hence, the ligase assay can be used as a sensitive enzymic marker for endoplasmic reticulum in rat liver. The kinetic parameters of both enzymic activities were determined by using purified rough endoplasmic reticulum from rat liver. While the apparent maximal velocities for the two substrates are similar, the Michaelis constant for deoxycholate is significantly lower than that for cholate. Taurocholate and deoxycholate are shown to be competitive inhibitors of cholic acid:CoA ligase. The inhibition constant of deoxycholate is similar to its Michaelis constant for the deoxycholoyl-CoA-synthesizing reaction, suggesting that the same enzyme is responsible for both ligase activities.  相似文献   
17.
The polyisoprenyl phosphate dephosphorylating activity of rat liver has been investigated with regard to substrate specificity, subcellular distribution, and transmembrane orientation. Total liver microsomes were employed as a source of enzymatic activity against a variety of 32P-labeled substrates. Susceptibility to dephosphorylation followed the order solanesyl phosphate greater than alpha-cis-polyprenyl 19-phosphate = alpha-trans-polyprenyl 19-phosphate = dihydrosolanesyl phosphate greater than (S)-dolichyl 19-phosphate = (R)-dolichyl 19-phosphate = (R,S)-dolichyl 11-phosphate. There appeared to be no major effect of chain length from 11 to 20 isoprenes. Data obtained from inhibition studies using solanesyl [32P]phosphate as substrate were consistent with the substrate specificity studies and suggested that a single activity is responsible. With dolichyl [32P]phosphate as substrate, the phosphatase specific activity of the subcellular fractions prepared from rat liver was found to follow the sequence Golgi = smooth endoplasmic reticulum greater than plasma membrane greater than lysosomes = rough endoplasmic reticulum greater than nuclei greater than mitochondria. Transmembrane topography studies, using enzyme latency as a criterion, were consistent with an orientation of the active site facing the cytoplasm.  相似文献   
18.

Background

The development of novel biomaterials able to control cell activities and direct their fate is warranted for engineering functional bone tissues. Adding bioactive materials can improve new bone formation and better osseointegration. Three types of titanium (Ti) implants were tested for in vitro biocompatibility in this comparative study: Ti6Al7Nb implants with 25% total porosity used as controls, implants infiltrated using a sol–gel method with hydroxyapatite (Ti HA) and silicatitanate (Ti SiO2). The behavior of human osteoblasts was observed in terms of adhesion, cell growth and differentiation.

Results

The two coating methods have provided different morphological and chemical properties (SEM and EDX analysis). Cell attachment in the first hour was slower on the Ti HA scaffolds when compared to Ti SiO2 and porous uncoated Ti implants. The Alamar blue test and the assessment of total protein content uncovered a peak of metabolic activity at day 8–9 with an advantage for Ti SiO2 implants. Osteoblast differentiation and de novo mineralization, evaluated by osteopontin (OP) expression (ELISA and immnocytochemistry), alkaline phosphatase (ALP) activity, calcium deposition (alizarin red), collagen synthesis (SIRCOL test and immnocytochemical staining) and osteocalcin (OC) expression, highlighted the higher osteoconductive ability of Ti HA implants. Higher soluble collagen levels were found for cells cultured in simple osteogenic differentiation medium on control Ti and Ti SiO2 implants. Osteocalcin (OC), a marker of terminal osteoblastic differentiation, was most strongly expressed in osteoblasts cultivated on Ti SiO2 implants.

Conclusions

The behavior of osteoblasts depends on the type of implant and culture conditions. Ti SiO2 scaffolds sustain osteoblast adhesion and promote differentiation with increased collagen and non-collagenic proteins (OP and OC) production. Ti HA implants have a lower ability to induce cell adhesion and proliferation but an increased capacity to induce early mineralization. Addition of growth factors BMP-2 and TGFβ1 in differentiation medium did not improve the mineralization process. Both types of infiltrates have their advantages and limitations, which can be exploited depending on local conditions of bone lesions that have to be repaired. These limitations can also be offset through methods of functionalization with biomolecules involved in osteogenesis.
  相似文献   
19.
We present a new in vitro system for characterizing the binding and mobility of enhanced green fluorescent protein (EGFP)-labeled nuclear proteins by fluorescence recovery after photobleaching in digitonin-permeabilized cells. This assay reveals that SRm160, a splicing coactivator and component of the exon junction complex (EJC) involved in RNA export, has an adenosine triphosphate (ATP)-dependent mobility. Endogenous SRm160, lacking the EGFP moiety, could also be released from sites at splicing speckled domains by an ATP-dependent mechanism. A second EJC protein, RNPS1, also has an ATP-dependent mobility, but SRm300, a protein that binds to SRm160 and participates with it in RNA splicing, remains immobile after ATP supplementation. This finding suggests that SRm160-containing RNA export, but not splicing, complexes have an ATP-dependent mobility. We propose that RNA export complexes have an ATP-regulated mechanism for release from binding sites at splicing speckled domains. In vitro fluorescence recovery after photobleaching is a powerful tool for identifying cofactors required for nuclear binding and mobility.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号