全文获取类型
收费全文 | 122篇 |
免费 | 16篇 |
专业分类
138篇 |
出版年
2021年 | 2篇 |
2019年 | 1篇 |
2018年 | 2篇 |
2017年 | 3篇 |
2016年 | 2篇 |
2015年 | 7篇 |
2014年 | 3篇 |
2013年 | 2篇 |
2012年 | 2篇 |
2011年 | 3篇 |
2010年 | 4篇 |
2009年 | 8篇 |
2008年 | 3篇 |
2007年 | 2篇 |
2004年 | 1篇 |
2002年 | 1篇 |
2001年 | 3篇 |
1999年 | 6篇 |
1998年 | 8篇 |
1997年 | 2篇 |
1996年 | 5篇 |
1995年 | 4篇 |
1994年 | 2篇 |
1993年 | 3篇 |
1992年 | 2篇 |
1991年 | 6篇 |
1990年 | 5篇 |
1989年 | 2篇 |
1988年 | 2篇 |
1987年 | 8篇 |
1986年 | 4篇 |
1985年 | 4篇 |
1984年 | 1篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1978年 | 3篇 |
1977年 | 5篇 |
1976年 | 1篇 |
1975年 | 2篇 |
1974年 | 2篇 |
1973年 | 1篇 |
1971年 | 1篇 |
排序方式: 共有138条查询结果,搜索用时 15 毫秒
51.
A modular treatment of molecular traffic through the active site of cholinesterase 总被引:1,自引:0,他引:1 下载免费PDF全文
We present a model for the molecular traffic of ligands, substrates, and products through the active site of cholinesterases (ChEs). First, we describe a common treatment of the diffusion to a buried active site of cationic and neutral species. We then explain the specificity of ChEs for cationic ligands and substrates by introducing two additional components to this common treatment. The first module is a surface trap for cationic species at the entrance to the active-site gorge that operates through local, short-range electrostatic interactions and is independent of ionic strength. The second module is an ionic-strength-dependent steering mechanism generated by long-range electrostatic interactions arising from the overall distribution of charges in ChEs. Our calculations show that diffusion of charged ligands relative to neutral isosteric analogs is enhanced approximately 10-fold by the surface trap, while electrostatic steering contributes only a 1.5- to 2-fold rate enhancement at physiological salt concentration. We model clearance of cationic products from the active-site gorge as analogous to the escape of a particle from a one-dimensional well in the presence of a linear electrostatic potential. We evaluate the potential inside the gorge and provide evidence that while contributing to the steering of cationic species toward the active site, it does not appreciably retard their clearance. This optimal fine-tuning of global and local electrostatic interactions endows ChEs with maximum catalytic efficiency and specificity for a positively charged substrate, while at the same time not hindering clearance of the positively charged products. 相似文献
52.
Background
The leukocyte common antigen related receptor (LAR) protein has been shown to modulate the signal transduction of a number of different growth factors, including insulin and insulin-like growth factor 1. Splice variants exhibit differing roles and are expressed according to tissue type and developmental stage. 相似文献53.
Cell-to-cell transfer of glial proteins to the squid giant axon: The glia- neuron protein transfer hypothesis 下载免费PDF全文
The hypothesis that glial cells synthesize proteins which are transferred to adjacent neurons was evaluated in the giant fiber of the squid (Loligo pealei). When giant fibers are separated from their neuron cell bodies and incubated in the presence of radioactive amino acids, labeled proteins appear in the glial cells and axoplasm. Labeled axonal proteins were detected by three methods: extrusion of the axoplasm from the giant fiber, autoradiography, and perfusion of the giant fiber. This protein synthesis is completely inhibited by puromycin but is not affected by chloramphenicol. The following evidence indicates that the labeled axonal proteins are not synthesized within the axon itself. (a) The axon does not contain a significant amount of ribosomes or ribosomal RNA. (b) Isolated axoplasm did not incorporate [(3)H]leucine into proteins. (c) Injection of Rnase into the giant axon did not reduce the appearance of newly synthesized proteins in the axoplasm of the giant fiber. These findings, coupled with other evidence, have led us to conclude that the adaxonal glial cells synthesize a class of proteins which are transferred to the giant axon. Analysis of the kinetics of this phenomenon indicates that some proteins are transferred to the axon within minutes of their synthesis in the glial cells. One or more of the steps in the transfer process appear to involve Ca++, since replacement of extracellular Ca++ by either Mg++ or Co++ significantly reduces the appearance of labeled proteins in the axon. A substantial fraction of newly synthesized glial proteins, possibly as much as 40 percent, are transferred to the giant axon. These proteins are heterogeneous and range in size from 12,000 to greater than 200,000 daltons. Comparisons of the amount of amino acid incorporation in glia cells and neuron cell bodies raise the possibility that the adaxonal glial cells may provide an important source of axonal proteins which is supplemental to that provided by axonal transport from the cell body. These findings are discussed with reference to a possible trophic effect of glia on neurons and metabolic cooperation between adaxonal glia and the axon. 相似文献
54.
55.
56.
57.
58.
59.
60.
A simple, fast and sensitive method was developed to verify the presence of
the sialyl Lewis(x) antigen on an N-linked glycoprotein. High performance
liquid chromatography-electrospray mass spectrometry (HPLC-ESI/MS) was used
to identify which of the five N-linked glycosylation sites of human plasma
alpha1-acid-glycoprotein (orosomucoid, OMD) contain the sialyl Lewis(x)
antigen. OMD was digested with proteolytic enzymes and analyzed by reversed
phase chromatography coupled with on-line ESI/MS. A tandem mass
spectrometry experiment was designed to detect the presence of the sialyl
Lewis(x) antigen based on the observation of an 803 mass to charge ratio (
m/z ) ion produced in the intermediate pressure region of the ESI
interface. The ESI/MS signal at m/z 803 is consistent with an oxonium ion
for a glycan structure containing NeuAc, Gal, GlcNAc, and Fuc. The identity
of the m/z 803 ion was confirmed by ESI/MS/MS analysis of the m/z 803
fragment ion and comparison with a sialyl Lewis(x) standard. The
stereochemistry and linkage positions were assigned using previous NMR
analysis but could be determined with permethylation analysis if necessary.
The analysis of OMD gave a pattern showing signal for the sialyl Lewis(x)
antigen coeluting with each of the five N-linked glycopeptides. The ability
to monitor sialyl Lewis(x) expression at each of the five sites is of
interest in the study of OMD's role in inflammatory diseases.
相似文献