首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   2篇
  2022年   1篇
  2021年   3篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   8篇
  2012年   7篇
  2011年   3篇
  2010年   4篇
  2009年   3篇
  2008年   5篇
  2007年   1篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1967年   2篇
排序方式: 共有58条查询结果,搜索用时 343 毫秒
31.
High-throughput screening (HTS) assays enable the testing of large numbers of chemical substances for activity in diverse areas of biology. The biological responses measured in HTS assays span isolated biochemical systems containing purified receptors or enzymes to signal transduction pathways and complex networks functioning in cellular environments. This Review addresses factors that need to be considered when implementing assays for HTS and is aimed particularly at investigators new to this field. We discuss assay design strategies, the major detection technologies and examples of HTS assays for common target classes, cellular pathways and simple cellular phenotypes. We conclude with special considerations for configuring sensitive, robust, informative and economically feasible HTS assays.  相似文献   
32.
Two major plasma proteins in humans are primarily responsible for drug binding, the α1-acid-glycoprotein (AGP) and human serum albumin (HSA). The availability of at least a semiquantitative high-throughput assay for assessment of protein binding is expected to aid in bridging the current gap between high-throughput screening and early lead discovery, where cell-based and biochemical assays are deployed routinely to test up to several million compounds rapidly, as opposed to the late-stage candidate drug profiling methods which test at most dozens of compounds at a time. Here, we describe the miniaturization of a pair of assays based on the binding- and displacement-induced changes in fluorescence polarization (FP) of fluorescent small molecule probes known to specifically target the drug-binding sites of these two proteins. A robust and reproducible assay performance was achieved in ≤4 µL assay volume in 1,536-well format. The assays were tested against a validation set of 10 known protein binders, and the results compared favorably with data obtained using protein-coated beads with high-performance liquid chromatography analysis. The miniaturized assays were taken to a high-throughput level in a screen of the LOPAC1280 collection of 1,280 pharmacologically active compounds. The adaptation of the AGP and HSA FP assays to a 1,536-well format should allow their use in early-stage profiling of large-size compound sets.  相似文献   
33.
The major human apurinic/apyrimidinic endonuclease APE1 plays a pivotal role in the repair of base damage via participation in the DNA base excision repair (BER) pathway. Increased activity of APE1, often observed in tumor cells, is thought to contribute to resistance to various anticancer drugs, whereas down-regulation of APE1 sensitizes cells to DNA damaging agents. Thus, inhibiting APE1 repair endonuclease function in cancer cells is considered a promising strategy to overcome therapeutic agent resistance. Despite ongoing efforts, inhibitors of APE1 with adequate drug-like properties have yet to be discovered. Using a kinetic fluorescence assay, we conducted a fully-automated high-throughput screen (HTS) of the NIH Molecular Libraries Small Molecule Repository (MLSMR), as well as additional public collections, with each compound tested as a 7-concentration series in a 4 µL reaction volume. Actives identified from the screen were subjected to a panel of confirmatory and counterscreen tests. Several active molecules were identified that inhibited APE1 in two independent assay formats and exhibited potentiation of the genotoxic effect of methyl methanesulfonate with a concomitant increase in AP sites, a hallmark of intracellular APE1 inhibition; a number of these chemotypes could be good starting points for further medicinal chemistry optimization. To our knowledge, this represents the largest-scale HTS to identify inhibitors of APE1, and provides a key first step in the development of novel agents targeting BER for cancer treatment.  相似文献   
34.
Human DNA polymerase kappa (pol κ) is a translesion synthesis (TLS) polymerase that catalyzes TLS past various minor groove lesions including N 2-dG linked acrolein- and polycyclic aromatic hydrocarbon-derived adducts, as well as N 2-dG DNA–DNA interstrand cross-links introduced by the chemotherapeutic agent mitomycin C. It also processes ultraviolet light-induced DNA lesions. Since pol κ TLS activity can reduce the cellular toxicity of chemotherapeutic agents and since gliomas overexpress pol κ, small molecule library screens targeting pol κ were conducted to initiate the first step in the development of new adjunct cancer therapeutics. A high-throughput, fluorescence-based DNA strand displacement assay was utilized to screen ∼16,000 bioactive compounds, and the 60 top hits were validated by primer extension assays using non-damaged DNAs. Candesartan cilexetil, manoalide, and MK-886 were selected as proof-of-principle compounds and further characterized for their specificity toward pol κ by primer extension assays using DNAs containing a site-specific acrolein-derived, ring-opened reduced form of γ-HOPdG. Furthermore, candesartan cilexetil could enhance ultraviolet light-induced cytotoxicity in xeroderma pigmentosum variant cells, suggesting its inhibitory effect against intracellular pol κ. In summary, this investigation represents the first high-throughput screening designed to identify inhibitors of pol κ, with the characterization of biochemical and biologically relevant endpoints as a consequence of pol κ inhibition. These approaches lay the foundation for the future discovery of compounds that can be applied to combination chemotherapy.  相似文献   
35.
Lea WA  Simeonov A 《PloS one》2012,7(4):e36219
Differential scanning fluorometry (DSF), also referred to as fluorescence thermal shift, is emerging as a convenient method to evaluate the stabilizing effect of small molecules on proteins of interest. However, its use in the mechanism of action studies has received far less attention. Herein, the ability of DSF to report on inhibitor mode of action was evaluated using glutathione S-transferase (GST) as a model enzyme that utilizes two distinct substrates and is known to be subject to a range of inhibition modes. Detailed investigation of the propensity of small molecule inhibitors to protect GST from thermal denaturation revealed that compounds with different inhibition modes displayed distinct thermal shift signatures when tested in the presence or absence of the enzyme's native co-substrate glutathione (GSH). Glutathione-competitive inhibitors produced dose-dependent thermal shift trendlines that converged at high compound concentrations. Inhibitors acting via the formation of glutathione conjugates induced a very pronounced stabilizing effect toward the protein only when GSH was present. Lastly, compounds known to act as noncompetitive inhibitors exhibited parallel concentration-dependent trends. Similar effects were observed with human GST isozymes A1-1 and M1-1. The results illustrate the potential of DSF as a tool to differentiate diverse classes of inhibitors based on simple analysis of co-substrate dependency of protein stabilization.  相似文献   
36.
Following the formation of oxidatively-induced DNA damage, several DNA glycosylases are required to initiate repair of the base lesions that are formed. Recently, NEIL1 and other DNA glycosylases, including OGG1 and NTH1 were identified as potential targets in combination chemotherapeutic strategies. The potential therapeutic benefit for the inhibition of DNA glycosylases was validated by demonstrating synthetic lethality with drugs that are commonly used to limit DNA replication through dNTP pool depletion via inhibition of thymidylate synthetase and dihydrofolate reductase. Additionally, NEIL1-associated synthetic lethality has been achieved in combination with Fanconi anemia, group G. As a prelude to the development of strategies to exploit the potential benefits of DNA glycosylase inhibition, it was necessary to develop a reliable high-throughput screening protocol for this class of enzymes. Using NEIL1 as the proof-of-principle glycosylase, a fluorescence-based assay was developed that utilizes incision of site-specifically modified oligodeoxynucleotides to detect enzymatic activity. This assay was miniaturized to a 1536-well format and used to screen small molecule libraries for inhibitors of the combined glycosylase/AP lyase activities. Among the top hits of these screens were several purine analogs, whose postulated presence in the active site of NEIL1 was consistent with the paradigm of NEIL1 recognition and excision of damaged purines. Although a subset of these small molecules could inhibit other DNA glycosylases that excise oxidatively-induced DNA adducts, they could not inhibit a pyrimidine dimer-specific glycosylase.  相似文献   
37.
38.
Glutaminase catalyzes the hydrolysis of glutamine to glutamate and plays a central role in the proliferation of neoplastic cells via glutaminolysis, as well as in the generation of excitotoxic glutamate in central nervous system disorders such as HIV-associated dementia (HAD) and multiple sclerosis. Both glutaminase siRNA and glutaminase inhibition have been shown to be effective in in vitro models of cancer and HAD, suggesting a potential role for small molecule glutaminase inhibitors. However, there are no potent, selective inhibitors of glutaminase currently available. The two prototypical glutaminase inhibitors, BPTES and DON, are either insoluble or non-specific. In a search for more drug-like glutaminase inhibitors, we conducted a screen of 1280 in vivo active drugs (Library of Pharmacologically Active Compounds (LOPAC1280)) and identified ebselen, chelerythrine and (R)-apomorphine. The newly identified inhibitors exhibited 10 to 1500-fold greater affinities than DON and BPTES and over 100-fold increased efficiency of inhibition. Although non-selective, it is noteworthy that the affinity of ebselen for glutaminase is more potent than any other activity yet described. It is possible that the previously reported biological activity seen with these compounds is due, in part, to glutaminase inhibition. Ebselen, chelerythrine and apomorphine complement the armamentarium of compounds to explore the role of glutaminase in disease.  相似文献   
39.
40.
Specialized DNA polymerases are involved in DNA synthesis during base-excision repair and translesion synthesis across a wide range of chemically modified DNA templates. Notable features of these enzymes include low catalytic efficiency, low processivity and low fidelity. Traditionally, in vitro studies of these enzymes have utilized radiolabeled substrates and gel electrophoretic separation of products. We have developed a simple homogeneous fluorescence-based method to study the enzymology of specialized DNA polymerases in real time. The method is based on fluorescent reporter strand displacement from a tripartite substrate containing a quencher-labeled template strand, an unlabeled primer and a fluorophore-labeled reporter. With this method, we could follow the activity of human DNA polymerases β, η, ι and κ under different reaction conditions, and we investigated incorporation of the aberrant nucleotide, 8-oxodGTP, as well as bypass of an abasic site or 8-oxoG DNA template lesion in different configurations. Lastly, we demonstrate that the method can be used for small molecule inhibitor discovery and characterization in highly miniaturized settings, and we report the first nanomolar inhibitors of Y-family DNA polymerases ι and η. The fluorogenic method presented here should facilitate mechanistic and inhibitor investigations of these polymerases and is also applicable to the study of highly processive replicative polymerases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号