首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   15篇
  国内免费   4篇
  226篇
  2022年   2篇
  2020年   1篇
  2018年   4篇
  2017年   1篇
  2016年   9篇
  2015年   10篇
  2014年   11篇
  2013年   5篇
  2012年   8篇
  2011年   10篇
  2010年   4篇
  2009年   8篇
  2008年   7篇
  2007年   14篇
  2006年   7篇
  2005年   10篇
  2004年   6篇
  2003年   5篇
  2002年   6篇
  2001年   8篇
  2000年   4篇
  1999年   2篇
  1998年   7篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   5篇
  1990年   2篇
  1989年   6篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   5篇
  1984年   2篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1978年   4篇
  1976年   4篇
  1975年   4篇
  1974年   1篇
  1973年   2篇
  1970年   2篇
  1968年   3篇
  1967年   1篇
  1966年   3篇
  1965年   1篇
排序方式: 共有226条查询结果,搜索用时 15 毫秒
81.
82.
Three aspects of size selective feeding by the scuticociliate Cyclidium glaucoma were studied in continuous cultivation systems. Firstly, grazing-induced changes in abundance, biomass, and size structure of a bacterial community were investigated. Secondly, we studied possible grazing-protection mechanisms of bacteria as a response to permanent presence of the predator. And finally, we were looking for potential feedback mechanisms within this predator-prey relationship, i.e., how the ciliate population reacted to a changed, more grazing-protected bacterial community. The first stage of the cultivation system consisted of the alga Cryptomonas sp. and the accompanying mixed bacterial community. These organisms were transferred to two second stage vessels, a control stage without ciliates and a second one inoculated with C. glaucoma. After the first week, the abundance of bacteria in the latter decreased by 60% and remained stable until the end of the experiment (65 d), whereas bacterial biomass was less affected (393 mg C L-1 during days 0-7, 281 mg C L-1 afterwards). The mean bacterial cell volume doubled from 0.089 mm3 to 0.167 mm3, which was mainly due to increasing cell widths. During the whole investigation period formation of colonies or filaments was not observed, but we found a clear feedback of ciliates on bacterial size. An increase in bacterial cell volume was always followed by a decline of the predator population, resulting in a yet undescribed type of microbial predator-prey relation. Literature and our own data on the optimal food size range grazed by C. glaucoma showed that bacterial cell width rather than length was responsible for that observed phenomenon. Finally, we suggest that uptake rates of spherical latex beads give only limited information on truly ingestible prey volumes and that prey geometry should be considered in future studies on size selective feeding of protists.  相似文献   
83.
We conducted a transplant experiment to elucidate the effects of different levels of grazing pressure, nutrient availability, especially phosphorus, and the impact of viruses on the changes in the structure of bacterioplankton assemblage in a meso-eutrophic reservoir. A sample taken from the nutrient-rich inflow part of the reservoir was size-fractionated and incubated in dialysis bags in both inflow and dam area. The structure of bacterial assemblage was examined by fluorescence in situ hybridization using oligonucleotide probes with different levels of specificity. In terms of the relative proportions of different bacterial groups, we found very few significant changes in the bacterioplankton composition after transplanting the treatments to the nutrient-poor dam area. However, we observed marked shifts in morphology and biomass towards the development of filaments, flocs and "vibrio-like" morphotypes of selected probe-defined groups of bacteria induced by increased grazing pressure. Despite the very high abundances of viruses in all the treatments, their effects on bacterioplankton were rather negligible.  相似文献   
84.
We studied the effects of nutrient availability and protistan grazing on bacterial dynamics and community composition (BCC) in different parts of the canyon-shaped Rímov reservoir (Czech Republic). The effects of protistan grazing on BCC were examined using a size fractionation approach. Water from the dam area with only bacteria (<0.8 microm), bacteria and heterotrophic nanoflagellates (<5 microm), or whole water were incubated in situ inside dialysis bags. Top-down or predator manipulations (size fractionation) were also combined with bottom-up or resource manipulations, i.e., transplantation of samples to the middle and upper inflow parts of the reservoir with increased phosphorus availability. Significant genotypic shifts in BCC occurred with transplantation as indicated by denaturing gradient gel electrophoresis. Using different probes for fluorescence in situ hybridization, we found that 10 to 50% of total bacteria were members of the phylogenetically small cluster of beta-proteobacteria (targeted with the probe R-BT065). These rod-shaped cells of very uniform size were vulnerable to predation but very fast growing and responded markedly to the different experimental manipulations. In all the grazer-free treatments, the members of the R-BT065 cluster showed the highest net growth rates of all studied bacterial groups. Moreover, their relative abundance was highly correlated with bacterial bulk parameters and proportions of bacteria with high nucleic acid (HNA) content. In contrast, increasing protistan bacterivory yielded lower proportions of R-BT065-positive and HNA bacteria substituted by increasing proportions of the class Actinobacteria, which profited from the enhanced protistan bacterivory.  相似文献   
85.
Studies on the methyl isocyanate adducts with globin   总被引:6,自引:0,他引:6  
Isocyanates such as methylisocyanate (MIC), an intermediate in the synthesis of carbamate pesticides, or diisocyanates, used in the production of plastics, are highly reactive toxic compounds that spontaneously bind to biological macromolecules. In vivo formation of stable adducts with blood protein globin offers possibilities for biomonitoring of internal exposure to various reactive species. Thus, biomonitoring of the isocyanates through determination of their specific adducts with globin is a challenge. In this study, we characterized the adducts formed in human globin upon treatment with 100-fold molar excess of MIC. The globin was subject to enzymatic hydrolysis with pronase, and the hydrolysate was analysed by high performance liquid chromatography with positive atmospheric pressure chemical ionization mass spectrometric detection (HPLC/APCI-MS). The two major MIC adducts were those with N-terminal Val and side-chain of Lys, as confirmed by comparison with the synthetic standards. About 20 other adducts were observed, and several of them were tentatively identified using their MS and MS/MS spectra. Whereas detection of the adducts with Tyr and His was expected, the adducts with Trp and Phe, and a Lys adduct containing two MIC moieties, were probably analytical artifacts resulting from the transcarbamoylation during globin hydrolysis rather than products of direct carbamoylation. The other detected products were MIC-Val-His, derived from the N-terminal dipeptide of globin beta-chain, and dipeptides consisting of MIC-Lys attached to Gly, Val, Leu, Thr, and Glu. Failure to detect the corresponding non-modified dipeptides suggests that the pronase action may be hampered by the amino acid modification. MIC is known as a metabolic intermediate of the industrial solvents N,N-dimethylformamide (DMF) and N-methylformamide (MF) in humans and rats. The HPLC/APCI-MS analysis of globin from rats injected with DMF or MF, 1000 mg/kg, revealed the presence of the MIC adducts with both Val and Lys. The level of the Val adduct in globin from the DMF-dosed rats, determined using Edman degradation and GC/MS, was ca. 40 nmol/g, which is a level common in workers occupationally exposed to DMF. This suggests that also the Lys adduct in such human globin samples can be feasible to analysis and is therefore considered for further studies as a potential biomarker of exposure to DMF.  相似文献   
86.
In this pot experiment, cucumbers (Cucumis sativus L.) were grown in a model soil contaminated by three different concentrations of cadmium (40, 160, and 320 mg.kg?1) with different accompanied anions (Cl?, SO4 2?). In all variants, the most Cd (90 %) was accumulated in the roots, but higher content in the case of Cl?. The distribution of Cd in various cucumber organs was as follows: root > stem > leaf > fruits. However, in variants with higher doses of Cd with SO4 2?, the ratio was changed as follows: root > leaf > stem > fruits. In all variants, least of Cd (max. 1 %) was found in fruits. Variants with the highest Cd doses were significantly different by comparison with all other variants, but higher content was in the case of Cl? anion. Stimulation effect on the biomass production and growth of aerial parts and roots of plants in all variants with Cd was observed. Toxicity symptoms, mainly in the presence of leaf chlorosis and yellowing, were more visible in the variants with Cl?, in comparison with SO4 2?. The amounts of phenol compounds in leaves rose almost in all variants. Only the variants with higher Cd content with SO4 2? showed slight reduction. One possible explanation of reduced content may be their bounding on Cd. The content of salicylic acid was reduced in all variants with Cd treatment. However, it is difficult to conclude their role in plant defence responses to heavy metal, because their actual defence mechanism is still unclear. However, from these results, we can suggest that the accompanying anion and the form in which Cd exists may have an impact on the involvement of various antioxidant systems.  相似文献   
87.
The effect of propylthiouracil (PTU) on the growth activity of intact liver and liver regenerating after partial (65-70%) hepatectomy (PH) was studied in rats. PTU (Propycil, Kali-Chemie, FRG) was dissolved in drinking water (1 g PTU per litre) and this was given to the rats, as their sole source of fluids, three days before PH and then up to the end of the experiment. In rats given PTU, marked inhibition of liver DNA synthesis and the mitotic activity of hepatocytes was found after PH. This effect was potentiated to some extent by partial inanition of the experimental animals given PTU, as demonstrated in a paired feeding test in control rats. PTU inhibition of DNA synthesis in intact and regenerating liver also took effect in thyroidectomized rats, even with substitution (thyroid hormone) therapy. The experiments demonstrated that the effect of propylthiouracil on DNA synthesis in the liver is mediated primarily by way of its direct effect on the liver.  相似文献   
88.
89.
Animal production systems convert plant protein into animal protein. Depending on animal species, ration and management, between 5% and 45 % of the nitrogen (N) in plant protein is converted to and deposited in animal protein. The other 55%-95% is excreted via urine and feces, and can be used as nutrient source for plant (= often animal feed) production. The estimated global amount of N voided by animals ranges between 80 and 130 Tg N per year, and is as large as or larger than the global annual N fertilizer consumption. Cattle (60%), sheep (12%) and pigs (6%) have the largest share in animal manure N production. The conversion of plant N into animal N is on average more efficient in poultry and pork production than in dairy production, which is higher than in beef and sheep production. However, differences within a type of animal production system can be as large as differences between types of animal production systems, due to large effects of the genetic potential of animals, animal feed and management. The management of animals and animal feed, together with the genetic potential of the animals, are key factors to a high efficiency of conversion of plant protein into animal protein. The efficiency of the conversion of N from animal manure, following application to land, into plant protein ranges between 0 and 60%, while the estimated global mean is about 15%. The other 40%-100% is lost to the wider environment via NH3 volatilization, denitrification, leaching and run-off in pastures or during storage and/or following application of the animal manure to land. On a global scale, only 40%-50% of the amount of N voided is collected in barns, stables and paddocks, and only half of this amount is recycled to crop land. The N losses from animal manure collected in barns, stables and paddocks depend on the animal manure management system. Relative large losses occur in confined animal feeding operations, as these often lack the land base to utilize the N from animal manure effectively. Losses will be relatively low when all manure are collected rapidly in water-tight and covered basins, and when they are subsequently applied to the land in proper amounts and at the proper time, and using the proper method (low-emission techniques). There is opportunity for improving the N conversion in animal production systems by improving the genetic production potential of the herd, the composition of the animal feed, and the management of the animal manure. Coupling of crop and animal production systems, at least at a regional scale, is one way to high N use efficiency in the whole system. Clustering of confined animal production systems with other intensive agricultural production systems on the basis of concepts from industrial ecology with manure processing is another possible way to improve N use efficiency.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号