首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   8篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   8篇
  2012年   10篇
  2011年   9篇
  2010年   11篇
  2009年   6篇
  2008年   6篇
  2007年   3篇
  2006年   4篇
  2005年   6篇
  2004年   4篇
  2003年   6篇
  2002年   5篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1985年   1篇
  1973年   1篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
81.
Class I knox genes play an important role in shoot meristem function and are thus involved in the ordered development of stems, leaves, and reproductive organs. To elucidate the mechanism underlying the expression pattern of these homeobox genes, we studied a spontaneous tomato (Lycopersicon esculentum) mutant that phenotypically resembles, though is more extreme than, transgenic plants misexpressing class I knox genes. This mutant was found to carry a recessive allele, denoted clausa:shootyleaf (clau:shl)-a newly identified allele of clausa. Mutant plants exhibited abnormal leaf and flower morphology, epiphyllus inflorescences, fusion of organs, calyx asymmetry, and navel-like fruits. Analysis by scanning electron microscopy revealed that such fruits carried ectopic ovules, various vegetative primordia, as well as "forests" of stalked glandular trichomes. In situ RNA hybridization showed a peculiar expression pattern of the class I knox gene LeT6/TKn2; expression was restricted to the vascular system and palisade layer of mature leaves and to the inner part of ovules integuments. We conclude that CLAUSA regulates various aspects of tomato plant development, at least partly, by rendering the LeT6/TKn2 gene silent in specific tissues during development. Considering the expression pattern of LeT6/TKn2 in the clausa mutant, we suggest that the control over a given homeobox gene is maintained by several different regulatory mechanisms, in a cell type-dependent manner.  相似文献   
82.
In living woody seed plants (conifers and dicotyledons), when various obstacles such as buds and branches disrupt the axial polar auxin flow, auxin whirlpools are formed that induce the differentiation of circular tracheary elements in the secondary xylem. Identical circular patterns also occur at the same positions in the wood of the 375 million-year-old Upper Devonian fossil progymnosperm Archaeopteris. We propose that this is the earliest clear fossil evidence of polar auxin flow. Such spiral patterns do not occur in the primary xylem of the ca. 390-385 million-year-old Lower Devonian fossil land plants, fossil progymnosperms, Psilotum nudum, living ferns, and current seed plants that we examined. This discovery reveals an exciting potential for plant fossils to provide structural evidence of evolutionarily diagnostic physiological and developmental mechanisms and for the use of a combination of fossil evidence and developmental biology to characterize evolutionary patterns in terms of genetic changes in growth regulation.  相似文献   
83.
84.
85.
We describe a patient following acute myocardial infarction with a protracted clinical course presenting transient episodes of hypotension, who eventually developed cardiac tamponade. Echocardiography demonstrated pericardial effusion and emergency pericardiocentesis revealed blood. The patient's condition was stabilized and she underwent emergency thoracotomy with successful repair of left ventricular rupture. We discuss the literature and suggest an approach for management of patients with suspected ventricular rupture after myocardial infarction.  相似文献   
86.
87.
Summary The early-formed xylem of Suaeda monoica Forssk. ex J. F. Gmel (Chenopodiaceae) is temporarily rayless. Vascular rays differentiate during later stages of its xylem ontogeny. The rays in Suaeda are heterogeneous, and some of them are aggregated. The mature xylem of this species is characterized by two unique types of vascular rays: (1) rays with several inside initiation centres of small cells formed by local frequent cell divisions in the cambium, and (2) huge xylem rays with radial phloem strands that are connected to the axial phloem. The spacing of the xylem rays is not even, and possible mechanisms controlling ray spacing are discussed. Our observations indicate that rays do not have an inhibitory zone around them in which ray initiation is prevented. The initiation of radial patterns of small cells which appear like inside rays within a large vascular ray suggests that initiation and spacing of rays is controlled by radial signal flows in relationship with axial signal fluxes.  相似文献   
88.
89.
Arabidopsis thaliana is gradually gaining significance as a model for wood and fiber formation.revolute/ifl1 is an important mutant in this respect. To better characterize the fiber system of therevolute/ifl1 mutant, we grew plants of two alleles (rev-9 in Israel andrev-1 in the USA) and examined the fiber system of the inflorescence stems using both brightfield and polarized light. Microscopic examination of sections of plants belonging to the two different alleles clearly revealed that, contrary to previous views, in 18 (13 in Israel and 5 in Ohio) out of 30 stems (20 in Israel and 10 in Ohio) the mutant produced the primary wavy fiber system of the inflorescence stems. Our findings are further supported by the fact that fibers are seen in the figures published in other studies of the mutant even when it was stated that there were no fibers. The impression of a total lack of the wavy band of fibers is in many cases just a result of poorly lignified secondary walls. This specific gene that reduces lignification in fibers is of great significance for biotechnological developments for the paper industry and thus for the global economy and ecology. We propose thatrevoluta, the first name given to this mutant (Talbert and others 1995), is more appropriate thanifl1. Online publication: 7 April 2005  相似文献   
90.
Pines provide a model system for the gymnosperms, an old and successful group of vascular plants that last shared a common ancestor with the angiosperms about 285 million years ago. Gymnosperms are distinct from angiosperms in their reproduction, development, metabolism, adaptations, and evolution. Pines cover vast areas of the globe, are one of the most important genera of forest trees, dominate the ecology of many temperate and subtropical forest ecosystems, and provide a major fraction of the world's wood. Here, we summarize many features of pine that make it a useful model for gymnosperms and woody plants. We also describe the influence of its reproductive system on methods for genetic analysis and the prospects for genomic studies and genetic engineering. Pines are limited as model systems by their long generation times, large size, large genomes, and the long time from fertilization to seed set.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号