首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   8篇
  122篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   8篇
  2012年   10篇
  2011年   9篇
  2010年   11篇
  2009年   6篇
  2008年   6篇
  2007年   3篇
  2006年   4篇
  2005年   6篇
  2004年   4篇
  2003年   6篇
  2002年   5篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1985年   1篇
  1973年   1篇
排序方式: 共有122条查询结果,搜索用时 0 毫秒
121.
The regulation of vascular ray differentiation has received limited attention, despite the fact that vascular rays constitute an important part of the secondary body of plants. In this paper we review developmental aspects of the ray system and suggest a general hypothesis for the regulation of ray differentiation and evolution. In studies of ray differentiation, two basic factors should be taken into consideration: 1) the normal gradual increase in ray size in relation to age, distance from the pith, and distance from the young leaves; and 2) the influence of wound effects on the size, structure, and spacing of rays. The relationships between the rate of cambial activity and secondary xylem differentiation are not clearly understood. There are contrasting results on the relationships between ray number and rate of radial growth. The rate of radial growth (= rate of cambial activity) is not the regulating mechanism of ray characteristics. Bünning (1952, 1965) proposed that rays are distributed regularly in the tissue, as the outcome of an inhibitory influence expressed by them. However, Bünning’s hypothesis contradicts a basic feature of the vascular ray system, namely, fusion of rays. Detailed histological studies of the secondary xylem revealed that proximity to and contact with rays plays a major role in the survival of fusiform initials in the cambium (Bannan, 1951, 1953). Such evidence led Ziegler (1964) to suggest that since the cambium is supplied predominantly via the rays, this is an effective feedback regulative system for an equidistant arrangement of the rays. The hypothesis that rays are induced and controlled by a radial signal flow seems to be the best explanation for the structure and spacing of rays. The formation of a polycentric ray—a special case of “ray” initiation inside a vascular ray—supports the idea that radial signal flow occurs within the rays (Lev-Yadun & Aloni, 1991a). This idea is also supported by findings fromQuercus species in which aggregate rays in the xylem disperse naturally in branch junctions and, following partial girdling, leave a longitudinal narrow bridge of cambium and bark as a result of enhanced axial signal flow (of auxin and other growth regulators) (Lev-Yadun & Aloni, 1991b). The longitudinally elongated shape of rays is their response to axial signal flows (mainly the polar auxin flow). Two methods have been used to study the evolution of the ray system: 1) statistical studies of the relationships between vessel and ray characteristics in many species, when vessel characteristics were the evolutionary standard, and 2) comparison of ray characteristics in fossils originating from several geological eras. We suggest that evolution of the ray system reflects changes in the relations between radial and axial signal flows.  相似文献   
122.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号