首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1082篇
  免费   82篇
  国内免费   1篇
  2023年   9篇
  2022年   12篇
  2021年   28篇
  2020年   11篇
  2019年   16篇
  2018年   29篇
  2017年   32篇
  2016年   44篇
  2015年   55篇
  2014年   48篇
  2013年   66篇
  2012年   81篇
  2011年   85篇
  2010年   43篇
  2009年   39篇
  2008年   59篇
  2007年   68篇
  2006年   53篇
  2005年   72篇
  2004年   44篇
  2003年   48篇
  2002年   46篇
  2001年   11篇
  2000年   6篇
  1999年   15篇
  1998年   7篇
  1997年   8篇
  1996年   8篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   11篇
  1988年   3篇
  1987年   5篇
  1985年   4篇
  1984年   7篇
  1982年   5篇
  1981年   6篇
  1980年   5篇
  1979年   9篇
  1978年   3篇
  1977年   7篇
  1975年   7篇
  1974年   4篇
  1973年   3篇
  1971年   3篇
  1969年   2篇
排序方式: 共有1165条查询结果,搜索用时 31 毫秒
991.
A series of dendrimeric conjugates based on a PAMAM (polyamidoamine) backbone with macrocyclic Gd-DO3A-P(ABn) complexes (monophosphinated analogue of DOTA) was prepared. The chelates were covalently attached to the G1-, G2-, and G4-PAMAM dendrimers through a thiourea linker in high loads (>90%). The prepared conjugates G1-(Gd-DO3A-P(BnN{CS}))(8), G2-(Gd-DO3A-P(BnN{CS}))(16), and G4-(Gd-DO3A-P(BnN{CS}))(59) showed relaxivities of 10.1, 14.1, and 18.6 s(-)(1) mM(-)(1) at 20 MHz and 37 degrees C and pH = 7.5, respectively. A variable-pH study (range 2-12) revealed up to 30% increase in the relaxivity at low pH for the G2-(Gd-DO3A-P(BnN{CS}))(16) conjugate. As confirmed by (1)H NMR titration of the unmodified G2 dendrimer, this is due to protonation of core tertiary amines leading to a more open and rigid structure. The variable-temperature (17)O NMR and (1)H NMRD relaxometric studies confirmed that the relaxivity is not controlled by water exchange but by rotational dynamics. A multiparametrical data evaluation using the Lipari-Szabo approach revealed that the water residence lifetime, (298)tau(M), for the conjugates studied was ca. 45-70 ns, which is longer than the value found for the monomeric model compound Gd-DO3A-P(ABn) (16 ns) but short enough so as not to limit the relaxivity. The global rotational correlation time, (298)tau(Rg), varied from 1.5 to 3.1 ns and seemed to indicate a sufficiently slow molecular tumbling to achieve the high relaxivities measured; however, the rigidity factor S(2) (approximately 0.26), describing the internal flexibility, was far from optimum. The overall relaxivity was significantly increased (e.g. by a factor of 1.8 for the G1-(Gd-DO3A-P(BnN{CS}))(8) conjugate) when a positively charged polyaminoacid like poly(Arg) or poly(Lys) was added to the conjugate solutions. The electrostatic interactions partially "freeze" the internal mobility of the conjugate and also slow down global motion. This assumption was confirmed by an evaluation of (1)H relaxometric data obtained for the G2-(Gd-DO3A-P(BnN{CS}))(16)-poly(Lys)(59) adduct. Importantly, it was proved that the adduct formation did not hamper the water exchange process.  相似文献   
992.
The interaction of natural (alginic and fulvic acids) and synthetic (polyacrylic acid 2.0 kDa) polyelectrolytes with some protonated polyamines [diamines: ethylendiamine, 1,4-diaminobutane (or putrescine), 1,5-diaminopentane (or cadaverine); triamines: N-(3-aminopropyl)-1,4-diaminobutane (or spermidine), diethylenetriamine; tetramine: N,N'-bis(3-aminopropyl)-1,4-diaminobutane (or spermine); pentamine: tetraethylene-pentamine; hexamine: pentaethylenehexamine] was studied at T=25 degrees C by potentiometry and calorimetry. Measurements were performed without supporting electrolyte, in order to avoid interference, and results were reported at I=0 mol L(-)(1). For all the systems, the formation of (am)L(2)H(i) species was found (am=amine; L=polyelectrolyte; i=1...4, depending on the amine considered). The stability of polyanion-polyammonium cation complexes is always significant, and for high-charged polycations, we observe a stability comparable to that of strong metal complexes. For example, by considering the formation reaction (am)H(i)+2L=(am)L(2)H(i) we found log K(i)=6.0, 6.5 and 10.8 for i=1, 2 and 3, respectively, in the system alginate-spermidine. Low and positive formation DeltaH(degrees) values indicate that the main contribution to the stability is entropic in nature. The sequestering ability of polyelectrolytes toward amines was modelled by a sigmoid Boltzman type equation. Some empirical relationships between stability, charges and DeltaG(degrees) and TDeltaS(degrees) are reported. Mean values per salt bridge of formation thermodynamic parameters (DeltaX(degrees) (n)) are DeltaG(degrees) (n)=-5.8+/-0.4, DeltaH degrees (n)=0.7+/-0.5 and TDeltaS(degrees) (n)=6.5+/-0.5 kJmol(-)(1) for all the systems studied in this work.  相似文献   
993.
The formation and stability of Mg(2+) and Ca(2+)-phytate complexes was studied potentiometrically using an ISE-H(+) electrode. Measurements were performed at 10 degrees C and 25 degrees C in NaCl(aq) in the ionic strength range 0.1< or =I< or =0.75 mol L(-1). For both magnesium and calcium systems, the formation of ten M(i)PhyH(j)((12-2i-j)-) species was observed in the range 3< or =pH< or =7 with i=1, 2, 3 and j=3, 4, 5 (and i=3, j=2). These species are quite stable; here we report for example some quantitative data for the species Ca(i)PhyH(3)((9-2i)-), i=1, 2, 3 (equilibrium iCa(2+)+H(j)Phy((12-j)-)=Ca(i)PhyH(j)((12-j-2i)-): K(ij)) at I=0.25 mol L(-1) and t=25 degrees C: logK(13)=3.42, logK(23)=6.47 and logK(33)=9.41. The speciation of the Ca(2+)-phytate system was also checked by ISE-Ca(2+) measurements. Dependence on ionic strength was modeled using a simple Debye-Hückel type equation and formation constants were calculated at infinite dilution. The stability constants of complexes formed at pH>7 were estimated using an empirical predictive equation. The sequestering ability of phytate towards Mg(2+) and Ca(2+) was calculated in different experimental conditions and compared with those of other chelating agents.  相似文献   
994.
Separation and isolation of the two main compounds suaveolol and methyl suaveolate from leaves of chichinguaste (Hyptis suaveolens Poit., Lamiaceae) could be achieved by means of repeated column chromatography and repeated preparative thin layer chromatography. Their chemical structures were approved by MS, 1H NMR, 13C NMR and 2D-NMR experiments. The anti-inflammatory activity of the two compounds was tested for the first time as inhibition of croton oil-induced dermatitis of the mouse ear. Suaveolol and methyl suaveolate showed nearly the same dose-dependent topical anti-inflammatory activity, only two to three times lower than that of the reference drug indomethacin. The anti-inflammatory properties of these compounds could contribute to the antiphlogistic activity of extracts of Hyptis species and confirm the rational use of Hyptis suaveolens extracts in dermatological diseases.  相似文献   
995.
Recent studies revealed that a class III semaphorin, semaphorin 3E (Sema3E), acts through a single-pass transmembrane receptor, plexin D1, to provide a repulsive cue for plexin D1-expressing endothelial cells, thus providing a highly conserved and developmentally regulated signaling system guiding the growth of blood vessels. We show here that Sema3E acts as a potent inhibitor of adult and tumor-induced angiogenesis. Activation of plexin D1 by Sema3E causes the rapid disassembly of integrin-mediated adhesive structures, thereby inhibiting endothelial cell adhesion to the extracellular matrix (ECM) and causing the retraction of filopodia in endothelial tip cells. Sema3E acts on plexin D1 to initiate a two-pronged mechanism involving R-Ras inactivation and Arf6 stimulation, which affect the status of activation of integrins and their intracellular trafficking, respectively. Ultimately, our present study provides a molecular framework for antiangiogenesis signaling, thus impinging on a myriad of pathological conditions that are characterized by aberrant increase in neovessel formation, including cancer.Pathological angiogenesis characterizes numerous human diseases, ranging from chronic inflammation, atherosclerosis, diabetic retinopathy, and age-related macular degeneration to cancer (5, 11, 30). Thus, elucidating the mechanisms underlying normal and aberrant blood vessel growth may provide new therapeutic options for many highly prevalent disease conditions. Ultimately, normal angiogenesis results from a precise balance between pro- and antiangiogenic mediators. Among the former, the family of vascular endothelial growth factors (VEGFs), basic fibroblastic growth factor (bFGF), sphingosine-1-phosphate (S1P), and the chemokines interleukin-8/CXCL8 and SDF-1/CXCL12 and their receptors are some of the most widely investigated (reviewed in references 3, 5, 8, and 17). The best-known angiogenesis inhibitors are proteolytic cleavage products of extracellular matrix (ECM) or serum components, such as endostatin, angiostatin, arresten, and tumstatin (reviewed in references 11 and 20). Antiangiogenic cytokines have also been described, including interferons and certain interleukins, which appear to act indirectly by limiting the expression of proangiogenic mediators or inducing antiangiogenic molecules (reviewed in references 11 and 20). In contrast, there are few known developmentally regulated, naturally occurring antiangiogenic molecules, which include platelet factor 4 (18), thrombospondin 1 (14), and pigment epithelium-derived factor (PEDF) (9). Their precise mechanism of action is not fully understood, thus limiting the ability to design new molecularly based antiangiogenic strategies.Emerging evidence suggests that proteins involved in transmitting axonal guidance cues, including members of the netrin, slit, eph, and semaphorin families, also play a critical role in blood vessel guidance during physiological and pathological blood vessel development (6). For example, multiple secreted class III semaphorins, which regulate developmental axonal growth (23, 27), are now known to act through their receptors, the A family plexins (plexins A1, A2, and A3), and their coreceptors, neuropilin 1 and neuropilin 2, to initiate pro- and antiangiogenic responses (reviewed in references 6 and 19). However, neuropilins also act as coreceptors for multiple angiogenic factors, such as VEGF, thus limiting our ability to distinguish the downstream signaling events initiated by semaphorins from those resulting from their interplay with endothelial growth and motility factors (19). In this regard, recent studies revealed that a class III semaphorin, semaphorin 3E (Sema3E), acts through a single-pass transmembrane receptor, plexin D1, independently of neuropilins to control endothelial cell (EC) positioning and patterning of the developing vasculature (13, 15). These findings prompted us to explore whether Sema3E acts as a natural antiangiogenic molecule and, if so, to investigate the underlying molecular mechanism. Indeed, we show here that Sema3E is a potent inhibitor of adult and tumor-induced angiogenesis. Sema3E causes filopodial retraction in endothelial tip cells and inhibits endothelial cell adhesion by disrupting integrin-mediated adhesive structures. At the molecular level, this process involves the stimulation of plexin D1 by Sema3E, which in turn interferes with R-Ras function and leads to the rapid activation of Arf6, thus revealing a novel physiological antiangiogenic signaling route.  相似文献   
996.
Traditionally described as a major anti-coagulant system, the protein C (PC) pathway, consisting of thrombomodulin, the endothelial cell protein C receptor and activated PC (APC), is gaining increasing attention as an important regulator of microvascular inflammation. Although they possess several anti-inflammatory and cytoprotective functions, the expression and function of the components of the PC pathway is downregulated during inflammation. Recent evidence suggests that the PC pathway is defective in patients with inflammatory bowel disease (IBD) and that restoring its function has anti-inflammatory effects on cultured intestinal microvascular endothelial cells and in animal models of colitis. Here, we propose that the PC pathway has an important role in governing intestinal microvascular inflammation and might provide a novel therapeutic target in the management of IBD.  相似文献   
997.
Loxoscelism (the term used to define accidents by the bite of brown spiders) has been reported worldwide. Clinical manifestations following brown spider bites are frequently associated with skin degeneration, a massive inflammatory response at the injured region, intravascular hemolysis, platelet aggregation causing thrombocytopenia and renal disturbances. The mechanisms by which the venom exerts its noxious effects are currently under investigation. The whole venom is a complex mixture of toxins enriched with low molecular mass proteins in the range of 5–40 kDa. Toxins including alkaline phosphatase, hyaluronidase, metalloproteases (astacin-like proteases), low molecular mass (5.6–7.9 kDa) insecticidal peptides and phospholipases-D (dermonecrotic toxins) have been identified in the venom. The purpose of the present review is to describe biotechnological applications of whole venom or some toxins, with especial emphasis upon molecular biology findings obtained in the last years.  相似文献   
998.
High-performance liquid chromatography method coupled with tandem mass spectrometry was developed for the quantitative determination of I3,II8-biapigenin. The procedure includes solid-phase extraction and separation on an XTerra MS C18. The assay was linear over a wide range; precision and accuracy were acceptable. Biapigenin was present in mouse and rat plasma after a standardized Hypericum perforatum extract. It was not detected in brain (<5ngg(-1)), suggesting poor brain-to-blood permeability. Biapigenin concentrations were measurable in mice after intraperitoneal biapigenin (10mgkg(-1)) but these amounted to about 2% of the equivalent systemic exposure, after correction for the contribution from residual blood.  相似文献   
999.
1000.
 Binding affinities to lactoperoxidase (LPO) of a homologous series of substituted catechol(amine)s [such as catechol, 4-methylcatechol, 3,4-dihydroxybenzoic acid, 3,4-dihydroxyphenylacetic acid, 3-(3,4-dihydroxyphenyl)propionic acid; dopamine, noradrenaline, adrenaline;l-3,4-dihydroxyphenylalanine] were studied by UV-visible spectroscopy and docking simulations. Dissociation constant (K d) values were calculated by direct fitting of the experimental data and fall in a range of 3–95 mM. Thermodynamic parameters are comparable with those reported for the interaction of LPO with p-substituted phenols, suggesting a similar general mode of binding. Furthermore, the relative contributions to binding energy, described by the unimolecular constant K u, show that interaction between protein and ligands originates from a relatively large number of groups. Docking and molecular dynamics simulations, in agreement with experimental evidence, predict that the substrate is localized into the access channel in the vicinity of heme distal pocket. This channel is characterized by a hydrophobic patch (six Phe residues) and by a charged contribution (two Glu and one His residues). All of the substrates, except caffeic acid, may approach the protein active site. Positively charged Arg372 acts as a gate above the heme distal pocket and seems to address substrate orientation in relation to the side-chain terminal group. Received: 4 June 1998 / Accepted: 1 October 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号