首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7654篇
  免费   508篇
  国内免费   1篇
  2023年   30篇
  2022年   71篇
  2021年   152篇
  2020年   95篇
  2019年   131篇
  2018年   205篇
  2017年   171篇
  2016年   248篇
  2015年   390篇
  2014年   460篇
  2013年   595篇
  2012年   660篇
  2011年   666篇
  2010年   383篇
  2009年   400篇
  2008年   506篇
  2007年   458篇
  2006年   462篇
  2005年   373篇
  2004年   407篇
  2003年   335篇
  2002年   332篇
  2001年   63篇
  2000年   48篇
  1999年   55篇
  1998年   60篇
  1997年   46篇
  1996年   41篇
  1995年   36篇
  1994年   24篇
  1993年   26篇
  1992年   29篇
  1991年   29篇
  1990年   27篇
  1989年   17篇
  1988年   20篇
  1987年   11篇
  1986年   8篇
  1985年   22篇
  1984年   13篇
  1983年   10篇
  1982年   12篇
  1981年   7篇
  1979年   4篇
  1978年   2篇
  1977年   4篇
  1974年   4篇
  1973年   2篇
  1972年   2篇
  1967年   2篇
排序方式: 共有8163条查询结果,搜索用时 31 毫秒
911.
S-Nitrosylation is a post-translational modification on cysteine(s) that can regulate protein function, and pannexin 1 (Panx1) channels are present in the vasculature, a tissue rich in nitric oxide (NO) species. Therefore, we investigated whether Panx1 can be S-nitrosylated and whether this modification can affect channel activity. Using the biotin switch assay, we found that application of the NO donor S-nitrosoglutathione (GSNO) or diethylammonium (Z)-1–1(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA NONOate) to human embryonic kidney (HEK) 293T cells expressing wild type (WT) Panx1 and mouse aortic endothelial cells induced Panx1 S-nitrosylation. Functionally, GSNO and DEA NONOate attenuated Panx1 currents; consistent with a role for S-nitrosylation, current inhibition was reversed by the reducing agent dithiothreitol and unaffected by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a blocker of guanylate cyclase activity. In addition, ATP release was significantly inhibited by treatment with both NO donors. To identify which cysteine residue(s) was S-nitrosylated, we made single cysteine-to-alanine substitutions in Panx1 (Panx1C40A, Panx1C346A, and Panx1C426A). Mutation of these single cysteines did not prevent Panx1 S-nitrosylation; however, mutation of either Cys-40 or Cys-346 prevented Panx1 current inhibition and ATP release by GSNO. This observation suggested that multiple cysteines may be S-nitrosylated to regulate Panx1 channel function. Indeed, we found that mutation of both Cys-40 and Cys-346 (Panx1C40A/C346A) prevented Panx1 S-nitrosylation by GSNO as well as the GSNO-mediated inhibition of Panx1 current and ATP release. Taken together, these results indicate that S-nitrosylation of Panx1 at Cys-40 and Cys-346 inhibits Panx1 channel currents and ATP release.  相似文献   
912.
The mechanism by which pathogenic mutations in the globular domain of the cellular prion protein (PrPC) increase the likelihood of misfolding and predispose to diseases is not yet known. Differences in the evidences provided by structural and metabolic studies of these mutants suggest that in vivo folding could be playing an essential role in their pathogenesis. To address this role, here we use the single or combined M206S and M213S artificial mutants causing labile folds and express them in cells. We find that these mutants are highly toxic, fold as transmembrane PrP, and lack the intramolecular disulfide bond. When the mutations are placed in a chain with impeded transmembrane PrP formation, toxicity is rescued. These results suggest that oxidative folding impairment, as on aging, can be fundamental for the genesis of intracellular neurotoxic intermediates key in prion neurodegenerations.  相似文献   
913.
Cdc45 is an essential protein conserved in all eukaryotes and is involved both in the initiation of DNA replication and the progression of the replication fork. With GINS, Cdc45 is an essential cofactor of the Mcm2-7 replicative helicase complex. Despite its importance, no detailed information is available on either the structure or the biochemistry of the protein. Intriguingly, whereas homologues of both GINS and Mcm proteins have been described in Archaea, no counterpart for Cdc45 is known. Herein we report a bioinformatic analysis that shows a weak but significant relationship among eukaryotic Cdc45 proteins and a large family of phosphoesterases that has been described as the DHH family, including inorganic pyrophosphatases and RecJ ssDNA exonucleases. These enzymes catalyze the hydrolysis of phosphodiester bonds via a mechanism involving two Mn(2+) ions. Only a subset of the amino acids that coordinates Mn(2+) is conserved in Cdc45. We report biochemical and structural data on the recombinant human Cdc45 protein, consistent with the proposed DHH family affiliation. Like the RecJ exonucleases, the human Cdc45 protein is able to bind single-stranded, but not double-stranded DNA. Small angle x-ray scattering data are consistent with a model compatible with the crystallographic structure of the RecJ/DHH family members.  相似文献   
914.
Schistosoma mansoni and Plasmodium falciparum are pathogen parasites that spend part of their lives in the blood stream of the human host and are therefore heavily exposed to fluxes of toxic reactive oxygen species (ROS). SmTGR, an essential enzyme of the S. mansoni ROS detoxification machinery, is known to be inhibited by Auranofin although the inhibition mechanism has not been completely clarified. Auranofin also kills P. falciparum, even if its molecular targets are unknown. Here, we used computational and docking techniques to investigate the molecular mechanism of interaction between SmTGR and Auranofin. Furthermore, we took advantage of the homology relationship and of docking studies to assess if PfTR, the SmTGR malaria parasite homologue, can be a putative target for Auranofin. Our findings support a recently hypothesized molecular mechanism of inhibition for SmTGR and suggest that PfTR is indeed a possible and attractive drug target in P. falciparum.  相似文献   
915.
The advent of multicellular organisms was accompanied by the development of short- and long-range chemical signalling systems, including those provided by the nervous and endocrine systems. In turn, the cells of these two systems have developed mechanisms for interacting with both adjacent and distant cells. With evolution, such mechanisms have diversified to become integrated in a complex regulatory network, whereby individual endocrine and neuro-endocrine cells sense the state of activity of their neighbors and, accordingly, regulate their own level of functioning. A consistent feature of this network is the expression of connexin-made channels between the (neuro)hormone-producing cells of all endocrine glands and secretory regions of the central nervous system so far investigated in vertebrates. This review summarizes the distribution of connexins in the mammalian (neuro)endocrine systems, and what we know about the participation of these proteins on hormone secretion, the life of the producing cells, and the action of (neuro)hormones on specific targets. The data gathered since the last reviews on the topic are summarized, with particular emphasis on the roles of Cx36 in the function of the insulin-producing beta cells of the endocrine pancreas, and of Cx40 in that of the renin-producing juxta-glomerular epithelioid cells of the kidney cortex. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   
916.
Primary Sj?gren's syndrome (pSS) is an autoimmune disease that targets salivary and lachrymal glands, characterized by anti-cholinergic autoantibodies directed against the M(3) muscarinic acetylcholine receptor (mAChR). The aim of this work was to evaluate if cholinergic autoantibodies contained in IgG purified from Sj?gren sera could trigger apoptosis of A253 cell line. We also determined if caspase-3 and matrix metalloproteinase-3 (MMP-3) are involved in the induction of A253 cell death. Our results demonstrated that anti-cholinergic autoantibodies stimulate apoptosis and inositol phosphate (InsP) accumulation accompanied by caspase-3 activation and MMP-3 production. All of these effects were blunted by atropine and J104794, indicating that M(3) mAChRs are impacted by the anti-cholinergic autoantibodies. The intracellular pathway leading to autoantibody-induced biological effects involves phospholipase C (PLC), calcium/calmodulin (CaM) and extracellular calcium as demonstrated by treatment with U-73122, W-7, verapamil, BAPTA and BAPTA-AM, all of which blocked the effects of the anti-cholinergic autoantibodies. In conclusion, anti-cholinergic autoantibodies in IgG purified from pSS patient's sera mediates apoptosis of the A253 cell line in an InsP, caspase-3 and MMP-3 dependent manner.  相似文献   
917.
Liposomes have been an excellent option as drug delivery systems, since they are able of incorporating lipophobic and/or lipophilic drugs, reduce drug side effects, increase drug targeting, and control delivery. Also, in the last years, their use reached the field of gene therapy, as non-viral vectors for DNA delivery. As a strategy to increase system stability, the use of polymerizable phospholipids has been proposed in liposomal formulations. In this work, through differential scanning calorimetry (DSC) and electron spin resonance (ESR) of spin labels incorporated into the bilayers, we structurally characterize liposomes formed by a mixture of the polymerizable lipid diacetylenic phosphatidylcholine 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC(8,9)PC) and the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), in a 1:1 molar ratio. It is shown here that the polymerization efficiency of the mixture (c.a. 60%) is much higher than that of pure DC(8,9)PC bilayers (c.a. 20%). Cationic amphiphiles (CA) were added, in a final molar ratio of 1:1:0.2 (DC(8,9)PC:DMPC:CA), to make the liposomes possible carriers for genetic material, due to their electrostatic interaction with negatively charged DNA. Three amphiphiles were tested, 1,2-dioleoyl-3-trimetylammonium-propane (DOTAP), stearylamine (SA) and trimetyl (2-miristoyloxietyl) ammonium chloride (MCL), and the systems were studied before and after UV irradiation. Interestingly, the presence of the cationic amphiphiles increased liposomes polymerization, MCL displaying the strongest effect. Considering the different structural effects the three cationic amphiphiles cause in DC(8,9)PC bilayers, there seem to be a correlation between the degree of DC(8,9)PC polymerization and the packing of the membrane at the temperature it is irradiated (gel phase). Moreover, at higher temperatures, in the bilayer fluid phase, more polymerized membranes are significantly more rigid. Considering that the structure and stability of liposomes at different temperatures can be crucial for DNA binding and delivery, we expect the study presented here contributes to the production of new carrier systems with potential applications in gene therapy.  相似文献   
918.
Callicebus and the pitheciins are closely related; however, differences in their diets and dental morphology suggest that they differ in the use of mechanically protected food. We describe physical traits of fruits consumed by white-handed titi monkeys (Callicebus lugens) and determine their influence on fruit part selection and immediate seed fate after fruit handling. We tested two hypotheses about the effects of mechanical fruit traits on fruit part selection and seed fate: (1) fruits selected for seed consumption are harder than fruits selected for their fleshy parts and (2) consumed seeds are softer than seeds with other fates. In addition, we analyzed the influence of other physical fruit traits on fruit part selection and seed fate. C. lugens included 69 species in its diet, from which it mainly consumed their fleshy parts. It also consumed seeds, alone or with fleshy fruit parts, but most of them ended up close to parent trees after being dropped or spat out. The first hypothesis was supported while the second was rejected, indicating that C. lugens tends to rely on hard fruits for obtaining seeds, while seed hardness had no influence on fruit part selection and seed fate, contrasting with the pattern reported for Pithecia and Chiropotes in other studies. Ripeness was the most influential factor for fruit part and seed fate discrimination. Results suggest a tendency to sclerocarpic foraging in C. lugens when feeding on seeds.  相似文献   
919.
The decision between death and survival is a difficult phase of a cell life. It may depend on the intensity of a stress stimulus, on the presence of invasive pathogens, or on specific signals from neighbouring cells. Death-related molecules are being shown to possess different, and sometimes opposite roles, which they play also according to a number of environmental clues. In this review, we will analyse some of these molecules and their roles, with particular regard to mitochondria-related factors, such as BCL2 family members, the apoptosome components, the autophagy/death cross-talkers and molecules regulating mitochondrial structure and functions. Turning the double-edged swords of death molecules into plougshares may turn out to be strategically crucial in molecular oncology.  相似文献   
920.
Polymorphonuclear neutrophils (PMN) are potent inflammatory effector cells essential to host defense, but at the same time they may cause significant tissue damage. Thus, timely induction of neutrophil apoptosis is crucial to avoid tissue damage and induce resolution of inflammation. NK cells have been reported to influence innate and adaptive immune responses by multiple mechanisms including cytotoxicity against other immune cells. In this study, we analyzed the effect of the interaction between NK cells and neutrophils. Coculture experiments revealed that human NK cells could trigger caspase-dependent neutrophil apoptosis in vitro. This event was dependent on cell-cell contact, and experiments using blocking Abs indicated that the effect was mediated by the activating NK cell receptor NKp46 and the Fas pathway. CD56-depleted lymphocytes had minimal effects on neutrophil survival, suggesting that the ability to induce neutrophil apoptosis is specific to NK cells. Our findings provide evidence that NK cells may accelerate neutrophil apoptosis, and that this interaction may be involved in the resolution of acute inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号