首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7415篇
  免费   484篇
  国内免费   1篇
  2023年   29篇
  2022年   71篇
  2021年   151篇
  2020年   95篇
  2019年   129篇
  2018年   192篇
  2017年   160篇
  2016年   235篇
  2015年   374篇
  2014年   441篇
  2013年   566篇
  2012年   642篇
  2011年   646篇
  2010年   375篇
  2009年   390篇
  2008年   496篇
  2007年   448篇
  2006年   458篇
  2005年   361篇
  2004年   395篇
  2003年   325篇
  2002年   328篇
  2001年   55篇
  2000年   46篇
  1999年   52篇
  1998年   60篇
  1997年   44篇
  1996年   40篇
  1995年   32篇
  1994年   23篇
  1993年   24篇
  1992年   28篇
  1991年   25篇
  1990年   24篇
  1989年   17篇
  1988年   20篇
  1987年   8篇
  1986年   8篇
  1985年   19篇
  1984年   14篇
  1983年   8篇
  1982年   12篇
  1981年   7篇
  1980年   2篇
  1979年   5篇
  1978年   2篇
  1977年   4篇
  1974年   3篇
  1967年   2篇
  1929年   1篇
排序方式: 共有7900条查询结果,搜索用时 734 毫秒
991.
Mdm2 promotes genetic instability and transformation independent of p53   总被引:2,自引:0,他引:2  
Mdm2, a regulator of the tumor suppressor p53, is frequently overexpressed in human malignancies. Mdm2 also has unresolved, p53-independent functions that contribute to tumorigenesis. Here, we show that increased Mdm2 expression induced chromosome/chromatid breaks and delayed DNA double-strand break repair in cells lacking p53 but not in cells with a mutant form of Nbs1, a component of the Mre11/Rad50/Nbs1 DNA repair complex. A 31-amino-acid region of Mdm2 was necessary for binding to Nbs1. Mutation of conserved amino acids in the Nbs1 binding domain of Mdm2 inhibited Mdm2-Nbs1 association and prevented Mdm2 from delaying phosphorylation of H2AX and ATM-S/TQ sites, repair of DNA breaks, and resolution of DNA damage foci. Similarly, the mutation of eight amino acids in the Mdm2 binding domain of Nbs1 inhibited Mdm2-Nbs1 interaction and blocked the ability of Mdm2 to delay DNA break repair. Both Nbs1 and ATM, but not the ubiquitin ligase activity of Mdm2, were necessary to inhibit DNA break repair. Only Mdm2 with an intact Nbs1 binding domain was able to increase the frequency of chromosome/chromatid breaks and the transformation efficiency of cells lacking p53. Therefore, the interaction of Mdm2 with Nbs1 inhibited DNA break repair, leading to chromosome instability and subsequent transformation that was independent of p53.  相似文献   
992.
While it is well appreciated that receptors for secreted cytokines transmit ligand-induced signals, little is known about additional roles for cytokine receptor components in the control of ligand transport and secretion. Here, we show that interleukin-15 (IL-15) translocation into the endoplasmic reticulum occurs independently of the presence of IL-15 receptor α (IL-15Rα). Subsequently, however, IL-15 is transported through the Golgi apparatus only in association with IL-15Rα and then is secreted. This intracellular IL-15/IL-15Rα complex already is formed in the endoplasmic reticulum and, thus, enables the further trafficking of complexed IL-15 through the secretory pathway. Just transfecting IL-15Rα in cells, which transcribe but normally do not secrete IL-15, suffices to induce IL-15 secretion. Thus, we provide the first evidence of how a cytokine is chaperoned through the secretory pathway by complexing with its own high-affinity receptor and show that IL-15/IL-15Rα offers an excellent model system for the further exploration of this novel mechanism for the control of cytokine secretion.  相似文献   
993.
Taxonomic markers (head structure morphometry, isoenzymes and randon amplified polymorphism of DNA - RAPD) were used to understand the population dynamics of Triatoma vitticeps, predominant triatomine species in Itanhomi district, using samples obtained from domestic, peridomiciliary and sylvatic habitats. Morphometric analysis revealed sexual dimorphism within the three samples although specimens could not be separated according to the habitat in which they were captured. Forty-two bands were analyzed from RAPD profiles generated using four primers. A dendrogram constructed from Dice's similarity coefficient values showed that migration of the insects between the habitats has occurred, without structuring of populations. Moreover, the dendrogram obtained from the genetic distance values showed an important gene flow between the sylvatic and domestic habitats. No polymorphism was found in the electrophoretic mobility of proteins for the ten enzymes studied. Our results revealed movement of triatomines between the three habitats, suggesting that the presence of T. vitticeps in houses should not be ignored. As invasion of houses by sylvatic insects is frequent and the natural infection indices of this species are among the highest known, epidemiological vigilance studies may reveal possible changes in T. vitticeps behaviour which could present future risks to public health.  相似文献   
994.
In neoplasic cachexia, chemical mediators seem to act as initiators or perpetuators of this process. Walker 256 cells, whose metabolic properties have so far been little studied with respect to cancer cachexia, are used as a model for the study of this syndrome. The main objective of this research was to pinpoint the substances secreted by these cells that may contribute to the progression of the cachectic state. Since inflammatory mediators seem to be involved in the manifestation of this syndrome, the in vitro production of nitric oxide (NO), cytokines (tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6)), and prostaglandin E2 (PGE2) was evaluated in Walker 256 cells isolated from ascitic tumors. After 4 or 5 h, a significant increase in NO production was observed (2.55 +/- 1.56 and 4.05 +/- 1.99 nmol NO per 10(7) cells, respectively). When isolated from a 6-day-old tumor, a significantly lower production of IL-6 and higher production of TNF-alpha than in cells from a 4-day-old tumor were observed, indicating a relationship between the production of cytokines and the time of tumor development after implantation. Considerable production of PGE(2) by Walker 256 cells isolated from the 6-day-old tumor was also observed. Polyamines were also determined in Walker 256 cells. Levels of putrescine, spermidine, and spermine did not show significant differences in tumors developed during 4 or 6 days. Direct evidence of the release of proinflammatory cytokines and PGE2 by Walker 256 cells suggests that these mediators can drive the cachectic syndrome in the host, the effect being dependent on tumor development time.  相似文献   
995.
Conformational or misfolding diseases are a large class of devastating human disorders associated with protein misfolding and aggregation. Most conformational diseases are caused by a combination of genetic and environmental factors, suggesting that spontaneous events can destabilize the protein involved in the pathology or impair the clearance mechanisms of misfolded aggregates. Aging is one of the risk factors associa-ted to these events, and the clinical relevance of conformational disorders is growing dramatically, as they begin to reach epidemic proportions due to increases in mean lifespan. Currently, there are no effective strategies to slow or prevent these diseases. Intrabodies are promising therapeutic agents for the treatment of misfolding diseases, because of their virtually infinite ability to specifically recognize the different conformations of a protein, including pathological isoforms, and because they can be targeted to the potential sites of aggregation (both intra- and extracellular sites). These molecules can work as neutralizing agents against amylo-idogenic proteins by preventing their aggregation, and/or as molecular shunters of intracellular traffic by re-routing the protein from its potential aggregation site. The fast-developing field of recombinant antibody technology provides intrabodies with enhanced binding specificity and stability, together with lower immunogenicity, for use in a clinical setting. This review provides an update on the applications of intrabodies in misfolding diseases, with particular emphasis on an evaluation of their multiple and feasible modes of action.  相似文献   
996.
997.
998.
The aim of this study was to investigate whether mitochondrial DNA (mtDNA) content is associated with insulin resistance (IR) in a sample of adolescents with features of metabolic syndrome. We further studied the link between polymorphisms in three genes involved in mitochondrial biogenesis and the presence of deleted mtDNA and mtDNA content. Data and blood samples were collected from 175 adolescents out of a cross-sectional, population-based study of 934 high school students. On the basis of the median value of homeostasis model assessment of IR (HOMA-IR) of the whole sample (2.2), the population was divided into two groups: noninsulin resistance (NIR) and IR. mtDNA quantification using nuclear DNA (nDNA) as a reference was carried out using a real-time quantitative PCR method. Genotyping for peroxisome proliferator-activated receptor-gamma (PPAR-gamma) (pro12Ala), PPAR- gamma coactivator-1alpha (PGC-1alpha) (Gly482Ser), and Tfam (rs1937 and rs12247015) polymorphisms was performed by PCR-based restriction fragment length polymorphism. Long-extension PCR was performed to amplify the whole mitochondrial genome. The mtDNA/nDNA ratio was significantly lower in the IR group (median: 9.08, range: 68.94) in comparison with the NIR group (12.24, 71.92) (P<0.03). Besides, the mtDNA/nDNA ratio was inversely correlated with HOMA (R: -0.18, P<0.02), glucose (R: -0.21, P<0.008), and uric acid (R: -0.18, P<0.03). Genotypes for the PPAR- gamma, PGC-1alpha, and Tfam variants were not associated with the mtDNA/nDNA ratio. Long-extension PCR did not show significant levels of mtDNA deletions. In conclusion, our findings indicate that reduced mtDNA content in peripheral leukocytes is associated with IR. This result seems not to be related with the previously mentioned variants in genes involved in the regulation of mitochondrial biogenesis.  相似文献   
999.

Background

The systematic study of the human genome indicates that the inter-individual variability is greater than expected and it is not only related to sequence polymorphisms but also to gene copy number variants (CNVs). Congenital Adrenal Hyperplasia due to 21-hydroxylase deficiency (21OHD) is the most common autosomal recessive disorder with a carrier frequency of 1∶25 to 1∶10. The gene that encodes 21-hydroxylase enzyme, CYP21A2, is considered to be one of the most polymorphic human genes. Copy number variations, such as deletions, which are severe mutations common in 21OHD patients, or gene duplications, which have been reported as rare events, have also been described. The correct characterization of 21OHD alleles is important for disease carrier detection and genetic counselling

Methodology and Findings

CYP21A2 genotyping by sequencing has been performed in a random sample of the Spanish population, where 144 individuals recruited from university students and employees of the hospital were studied. The frequency of CYP21A2 mutated alleles in our sample was 15.3% (77.3% were mild mutations, 9% were severe mutations and 13.6% were novel variants). Gene dosage assessment was also performed when CYP21A2 gene duplication was suspected. This analysis showed that 7% of individuals bore a chromosome with a duplicated CYP21A2 gene, where one of the copies was mutated.

Conclusions

As far as we know, the present study has shown the highest frequency of 21OHD carriers reported by a genotyping analysis. In addition, a high frequency of alleles with CYP21A2 duplications, which could be misinterpreted as 21OHD alleles, was found. Moreover, a high frequency of novel genetic variations with an unknown effect on 21-hydroxylase activity was also found. The high frequency of gene duplications, as well as novel variations, should be considered since they have an important involvement in carrier testing and genetic counseling.  相似文献   
1000.

Background

A great deal of sub-cellular organelle positioning, and essentially all minus-ended organelle transport, depends on cytoplasmic dynein, but how dynein''s function is regulated is not well understood. BicD is established to play a critical role in mediating dynein function—loss of BicD results in improperly localized nuclei, mRNA particles, and a dispersed Golgi apparatus—however exactly what BicD''s role is remains unknown. Nonetheless, it is widely believed that BicD may act to tether dynein to cargos. Here we use a combination of biophysical and biochemical studies to investigate BicD''s role in lipid droplet transport during Drosophila embryogenesis.

Methodology/Principal Findings

Functional loss of BicD impairs the embryo''s ability to control the net direction of droplet transport; the developmentally controlled reversal in transport is eliminated. We find that minimal BicD expression (near-BicDnull) decreases the average run length of both plus and minus end directed microtubule (MT) based transport. A point mutation affecting the BicD N-terminus has very similar effects on transport during cellularization (phase II), but in phase III (gastrulation) motion actually appears better than in the wild-type.

Conclusions/Significance

In contrast to a simple static tethering model of BicD function, or a role only in initial dynein recruitment to the cargo, our data uncovers a new dynamic role for BicD in actively regulating transport. Lipid droplets move bi-directionally, and our investigations demonstrate that BicD plays a critical—and temporally changing—role in balancing the relative contributions of plus-end and minus-end motors to control the net direction of transport. Our results suggest that while BicD might contribute to recruitment of dynein to the cargo it is not absolutely required for such dynein localization, and it clearly contributes to regulation, helping activation/inactivation of the motors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号