首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8395篇
  免费   554篇
  国内免费   1篇
  2023年   38篇
  2022年   101篇
  2021年   180篇
  2020年   121篇
  2019年   154篇
  2018年   213篇
  2017年   196篇
  2016年   265篇
  2015年   402篇
  2014年   492篇
  2013年   620篇
  2012年   720篇
  2011年   701篇
  2010年   422篇
  2009年   422篇
  2008年   539篇
  2007年   500篇
  2006年   498篇
  2005年   397篇
  2004年   423篇
  2003年   350篇
  2002年   362篇
  2001年   77篇
  2000年   79篇
  1999年   68篇
  1998年   67篇
  1997年   52篇
  1996年   48篇
  1995年   42篇
  1994年   27篇
  1993年   33篇
  1992年   42篇
  1991年   33篇
  1990年   35篇
  1989年   28篇
  1988年   30篇
  1987年   12篇
  1986年   14篇
  1985年   25篇
  1984年   15篇
  1983年   10篇
  1982年   14篇
  1981年   12篇
  1977年   6篇
  1974年   6篇
  1973年   6篇
  1972年   6篇
  1971年   7篇
  1969年   5篇
  1968年   6篇
排序方式: 共有8950条查询结果,搜索用时 390 毫秒
961.
962.
The endocrine pathways controlling vertebrate spermatogenesis are well established in mammals where the pituitary gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) exclusively activate the FSH receptor (FSHR) in Sertoli cells and the LH/choriogonadotropin receptor (LHCGR) in Leydig cells, respectively. In some teleosts, however, it has been shown that Lh can cross-activate the Fshra ortholog, and that Leydig cells coexpress the Lhcgrba and Fshra paralogs, thus mediating the androgenic function of Fsh in the testis. Here, we investigated whether these proposed mechanisms are conserved in an evolutionary advanced pleuronectiform teleost, the Senegalese sole (Solea senegalensis). Transactivation assays using sole Fshra- and Lhcgrba-expressing cells and homologous single-chain recombinant gonadotropins (rFsh and rLh) showed that rFsh exclusively activated Fshra, whereas rLh stimulated both Lhcgrba and Fshra. The latter cross-activation of Fshra by rLh occurred with an EC(50) 4-fold higher than for rFsh. Both recombinant gonadotropins elicited a significant androgen release response in vitro and in vivo, which was blocked by protein kinase A (PKA) and 3beta-hydroxysteroid dehydrogenase inhibitors, suggesting that activation of steroidogenesis through the cAMP/PKA pathway is the major route for both Lh- and Fsh-stimulated androgen secretion. Combined in situ hybridization and immunocytochemistry using cell-specific molecular markers and antibodies specifically raised against sole Fshra and Lhcgrba demonstrated that both receptors are expressed in Leydig cells, whereas Sertoli cells only express Fshra. These data suggest that Fsh-mediated androgen production through the activation of cognate receptors in Leydig cells is a conserved pathway in Senegalese sole.  相似文献   
963.
ClC-5 is a Cl(-)/H(+) antiporter that functions in endosomes and is important for endocytosis in the proximal tubule. The mechanism of transport coupling and voltage dependence in ClC-5 is unclear. Recently, a transport-deficient ClC-5 mutant (E268A) was shown to exhibit transient capacitive currents. Here, we studied the external and internal Cl(-) and pH dependence of the currents of E268A. Transient currents were almost completely independent of the intracellular pH. Even though the transient currents are modulated by extracellular pH, we could exclude that they are generated by proton-binding/unbinding reactions. In contrast, the charge movement showed a nontrivial dependence on external chloride, strongly supporting a model in which the movement of an intrinsic gating charge is followed by the voltage-dependent low-affinity binding of extracellular chloride ions. Mutation of the external Glu-211 (a residue implicated in the coupling of Cl(-) and proton transport) to aspartate abolished steady-state transport, but revealed transient currents that were shifted by ~150 mV to negative voltages compared to E268A. This identifies Glu(ext) as a major component of the gating charge underlying the transient currents of the electrogenic ClC-5 transporter. The molecular events underlying the transient currents of ClC-5 emerging from these results can be explained by an inward movement of the side chain of Glu(ext), followed by the binding of extracellular Cl(-) ions.  相似文献   
964.
S-Nitrosylation is a post-translational modification on cysteine(s) that can regulate protein function, and pannexin 1 (Panx1) channels are present in the vasculature, a tissue rich in nitric oxide (NO) species. Therefore, we investigated whether Panx1 can be S-nitrosylated and whether this modification can affect channel activity. Using the biotin switch assay, we found that application of the NO donor S-nitrosoglutathione (GSNO) or diethylammonium (Z)-1–1(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA NONOate) to human embryonic kidney (HEK) 293T cells expressing wild type (WT) Panx1 and mouse aortic endothelial cells induced Panx1 S-nitrosylation. Functionally, GSNO and DEA NONOate attenuated Panx1 currents; consistent with a role for S-nitrosylation, current inhibition was reversed by the reducing agent dithiothreitol and unaffected by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a blocker of guanylate cyclase activity. In addition, ATP release was significantly inhibited by treatment with both NO donors. To identify which cysteine residue(s) was S-nitrosylated, we made single cysteine-to-alanine substitutions in Panx1 (Panx1C40A, Panx1C346A, and Panx1C426A). Mutation of these single cysteines did not prevent Panx1 S-nitrosylation; however, mutation of either Cys-40 or Cys-346 prevented Panx1 current inhibition and ATP release by GSNO. This observation suggested that multiple cysteines may be S-nitrosylated to regulate Panx1 channel function. Indeed, we found that mutation of both Cys-40 and Cys-346 (Panx1C40A/C346A) prevented Panx1 S-nitrosylation by GSNO as well as the GSNO-mediated inhibition of Panx1 current and ATP release. Taken together, these results indicate that S-nitrosylation of Panx1 at Cys-40 and Cys-346 inhibits Panx1 channel currents and ATP release.  相似文献   
965.
The mechanism by which pathogenic mutations in the globular domain of the cellular prion protein (PrPC) increase the likelihood of misfolding and predispose to diseases is not yet known. Differences in the evidences provided by structural and metabolic studies of these mutants suggest that in vivo folding could be playing an essential role in their pathogenesis. To address this role, here we use the single or combined M206S and M213S artificial mutants causing labile folds and express them in cells. We find that these mutants are highly toxic, fold as transmembrane PrP, and lack the intramolecular disulfide bond. When the mutations are placed in a chain with impeded transmembrane PrP formation, toxicity is rescued. These results suggest that oxidative folding impairment, as on aging, can be fundamental for the genesis of intracellular neurotoxic intermediates key in prion neurodegenerations.  相似文献   
966.
Cdc45 is an essential protein conserved in all eukaryotes and is involved both in the initiation of DNA replication and the progression of the replication fork. With GINS, Cdc45 is an essential cofactor of the Mcm2-7 replicative helicase complex. Despite its importance, no detailed information is available on either the structure or the biochemistry of the protein. Intriguingly, whereas homologues of both GINS and Mcm proteins have been described in Archaea, no counterpart for Cdc45 is known. Herein we report a bioinformatic analysis that shows a weak but significant relationship among eukaryotic Cdc45 proteins and a large family of phosphoesterases that has been described as the DHH family, including inorganic pyrophosphatases and RecJ ssDNA exonucleases. These enzymes catalyze the hydrolysis of phosphodiester bonds via a mechanism involving two Mn(2+) ions. Only a subset of the amino acids that coordinates Mn(2+) is conserved in Cdc45. We report biochemical and structural data on the recombinant human Cdc45 protein, consistent with the proposed DHH family affiliation. Like the RecJ exonucleases, the human Cdc45 protein is able to bind single-stranded, but not double-stranded DNA. Small angle x-ray scattering data are consistent with a model compatible with the crystallographic structure of the RecJ/DHH family members.  相似文献   
967.
Schistosoma mansoni and Plasmodium falciparum are pathogen parasites that spend part of their lives in the blood stream of the human host and are therefore heavily exposed to fluxes of toxic reactive oxygen species (ROS). SmTGR, an essential enzyme of the S. mansoni ROS detoxification machinery, is known to be inhibited by Auranofin although the inhibition mechanism has not been completely clarified. Auranofin also kills P. falciparum, even if its molecular targets are unknown. Here, we used computational and docking techniques to investigate the molecular mechanism of interaction between SmTGR and Auranofin. Furthermore, we took advantage of the homology relationship and of docking studies to assess if PfTR, the SmTGR malaria parasite homologue, can be a putative target for Auranofin. Our findings support a recently hypothesized molecular mechanism of inhibition for SmTGR and suggest that PfTR is indeed a possible and attractive drug target in P. falciparum.  相似文献   
968.
The advent of multicellular organisms was accompanied by the development of short- and long-range chemical signalling systems, including those provided by the nervous and endocrine systems. In turn, the cells of these two systems have developed mechanisms for interacting with both adjacent and distant cells. With evolution, such mechanisms have diversified to become integrated in a complex regulatory network, whereby individual endocrine and neuro-endocrine cells sense the state of activity of their neighbors and, accordingly, regulate their own level of functioning. A consistent feature of this network is the expression of connexin-made channels between the (neuro)hormone-producing cells of all endocrine glands and secretory regions of the central nervous system so far investigated in vertebrates. This review summarizes the distribution of connexins in the mammalian (neuro)endocrine systems, and what we know about the participation of these proteins on hormone secretion, the life of the producing cells, and the action of (neuro)hormones on specific targets. The data gathered since the last reviews on the topic are summarized, with particular emphasis on the roles of Cx36 in the function of the insulin-producing beta cells of the endocrine pancreas, and of Cx40 in that of the renin-producing juxta-glomerular epithelioid cells of the kidney cortex. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   
969.
Primary Sj?gren's syndrome (pSS) is an autoimmune disease that targets salivary and lachrymal glands, characterized by anti-cholinergic autoantibodies directed against the M(3) muscarinic acetylcholine receptor (mAChR). The aim of this work was to evaluate if cholinergic autoantibodies contained in IgG purified from Sj?gren sera could trigger apoptosis of A253 cell line. We also determined if caspase-3 and matrix metalloproteinase-3 (MMP-3) are involved in the induction of A253 cell death. Our results demonstrated that anti-cholinergic autoantibodies stimulate apoptosis and inositol phosphate (InsP) accumulation accompanied by caspase-3 activation and MMP-3 production. All of these effects were blunted by atropine and J104794, indicating that M(3) mAChRs are impacted by the anti-cholinergic autoantibodies. The intracellular pathway leading to autoantibody-induced biological effects involves phospholipase C (PLC), calcium/calmodulin (CaM) and extracellular calcium as demonstrated by treatment with U-73122, W-7, verapamil, BAPTA and BAPTA-AM, all of which blocked the effects of the anti-cholinergic autoantibodies. In conclusion, anti-cholinergic autoantibodies in IgG purified from pSS patient's sera mediates apoptosis of the A253 cell line in an InsP, caspase-3 and MMP-3 dependent manner.  相似文献   
970.
Liposomes have been an excellent option as drug delivery systems, since they are able of incorporating lipophobic and/or lipophilic drugs, reduce drug side effects, increase drug targeting, and control delivery. Also, in the last years, their use reached the field of gene therapy, as non-viral vectors for DNA delivery. As a strategy to increase system stability, the use of polymerizable phospholipids has been proposed in liposomal formulations. In this work, through differential scanning calorimetry (DSC) and electron spin resonance (ESR) of spin labels incorporated into the bilayers, we structurally characterize liposomes formed by a mixture of the polymerizable lipid diacetylenic phosphatidylcholine 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC(8,9)PC) and the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), in a 1:1 molar ratio. It is shown here that the polymerization efficiency of the mixture (c.a. 60%) is much higher than that of pure DC(8,9)PC bilayers (c.a. 20%). Cationic amphiphiles (CA) were added, in a final molar ratio of 1:1:0.2 (DC(8,9)PC:DMPC:CA), to make the liposomes possible carriers for genetic material, due to their electrostatic interaction with negatively charged DNA. Three amphiphiles were tested, 1,2-dioleoyl-3-trimetylammonium-propane (DOTAP), stearylamine (SA) and trimetyl (2-miristoyloxietyl) ammonium chloride (MCL), and the systems were studied before and after UV irradiation. Interestingly, the presence of the cationic amphiphiles increased liposomes polymerization, MCL displaying the strongest effect. Considering the different structural effects the three cationic amphiphiles cause in DC(8,9)PC bilayers, there seem to be a correlation between the degree of DC(8,9)PC polymerization and the packing of the membrane at the temperature it is irradiated (gel phase). Moreover, at higher temperatures, in the bilayer fluid phase, more polymerized membranes are significantly more rigid. Considering that the structure and stability of liposomes at different temperatures can be crucial for DNA binding and delivery, we expect the study presented here contributes to the production of new carrier systems with potential applications in gene therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号