首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7468篇
  免费   481篇
  国内免费   1篇
  7950篇
  2024年   2篇
  2023年   35篇
  2022年   86篇
  2021年   151篇
  2020年   96篇
  2019年   130篇
  2018年   194篇
  2017年   160篇
  2016年   234篇
  2015年   376篇
  2014年   441篇
  2013年   568篇
  2012年   644篇
  2011年   649篇
  2010年   376篇
  2009年   390篇
  2008年   495篇
  2007年   451篇
  2006年   461篇
  2005年   364篇
  2004年   396篇
  2003年   325篇
  2002年   327篇
  2001年   55篇
  2000年   48篇
  1999年   55篇
  1998年   62篇
  1997年   44篇
  1996年   42篇
  1995年   33篇
  1994年   23篇
  1993年   25篇
  1992年   27篇
  1991年   27篇
  1990年   24篇
  1989年   17篇
  1988年   19篇
  1987年   8篇
  1986年   7篇
  1985年   18篇
  1984年   13篇
  1983年   7篇
  1982年   14篇
  1981年   7篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1977年   4篇
  1974年   3篇
  1967年   2篇
排序方式: 共有7950条查询结果,搜索用时 15 毫秒
91.
Cation–Cl? cotransporters (CCCs) are integral membrane proteins which catalyze the coordinated symport of Cl? with Na+ and/or K+ ions in plant and mammalian cells. Here we describe the first Saccharomyces cerevisiae CCC protein, encoded by the YBR235w open reading frame. Subcellular localization studies showed that this yeast CCC is targeted to the vacuolar membrane. Deletion of the YBR235w gene in a salt-sensitive strain (lacking the plasma-membrane cation exporters) resulted in an increased sensitivity to high KCl, altered vacuolar morphology control and decreased survival upon hyperosmotic shock. In addition, deletion of the YBR235w gene in a mutant strain deficient in K+ uptake produced a significant growth advantage over the parental strain under K+-limiting conditions, and a hypersensitivity to the exogenous K+/H+ exchanger nigericin. These results strongly suggest that we have identified a novel yeast vacuolar ion transporter mediating a K+–Cl? cotransport and playing a role in vacuolar osmoregulation. Considering its identified function, we propose to refer to the yeast YBR235w gene as VHC1 (vacuolar protein homologous to CCC family 1).  相似文献   
92.
The apicomplexan parasite Toxoplasma gondii, the causative agent of toxoplasmosis, is an important human pathogen. 1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) in the non-mevalonate isoprene biosynthesis pathway is essential to the organism and therefore a target for developing anti-toxoplasmosis drugs. In order to find potent inhibitors, we expressed and purified recombinant T. gondii DXR (TgDXR). Biochemical properties of this enzyme were characterized and an enzyme activity/inhibition assay was developed. A collection of 11 compounds with a broad structural diversity were tested against TgDXR and several potent inhibitors were identified with Ki values as low as 48 nM. Analysis of the results as well as those of Escherichia coli and Plasmodium falciparum DXR enzymes revealed a different structure–activity relationship profile for the inhibition of TgDXR.  相似文献   
93.
A major application of RNA interference (RNAi) is envisaged for the production of virus-resistant transgenic plants. For fruit trees, this remains the most, if not the only, viable option for the control of plant viral disease outbreaks in cultivated orchards, due to the difficulties associated with the use of traditional and conventional disease-control measures. The use of RNAi might provide an additional benefit for woody crops if silenced rootstock can efficiently transmit the silencing signal to non-transformed scions, as has already been demonstrated in herbaceous plants. This would provide a great opportunity to produce non-transgenic fruit from transgenic rootstock. In this review, we scrutinise some of the concerns that might arise with the use of RNAi for engineering virus-resistant plants, and we speculate that this virus resistance has fewer biosafety concerns. This is mainly because RNAi-eliciting constructs only express small RNA molecules rather than proteins, and because this technology can be applied using plant rootstock that can confer virus resistance to the scion, leaving the scion untransformed. We discuss the main biosafety concerns related to the release of new types of virus-resistant plants and the risk assessment approaches in the application of existing regulatory systems (in particular, those of the European Union, the USA, and Canada) for the evaluation and approval of RNAi-mediated virus-resistant plants, either as transgenic varieties or as plant virus resistance induced by transgenic rootstock.  相似文献   
94.
A convenient synthetic route and the characterization of complexes trans-[PtCl2(L)(PPh3)] (L = Et2NH (2), (PhCH2)2NH (3), (HOCH2CH2)2NH) (4) are reported. The antiproliferative activity was evaluated on three human tumor cell lines. The investigation on the mechanism of action highlighted for the most active complex 4 the capacity to affect mitochondrial functions. In particular, both the induction of the mitochondrial permeability transition phenomenon and an aspecific membrane damage occurred, depending on concentration.  相似文献   
95.
We report the synthesis and bio-pharmacological evaluation of a class of pyrrole derivatives featuring a small appendage fragment (carbaldehyde, oxime, nitrile) on the central core. Compound 1c proved to be extremely effective in vivo, showing an interesting anti-nociceptic profile that is comparable to reference compounds already marketed, hence representing a great stimulus for a further improvement of this class of molecules.  相似文献   
96.
Relaxases are proteins responsible for the transfer of plasmid and chromosomal DNA from one bacterium to another during conjugation. They covalently react with a specific phosphodiester bond within DNA origin of transfer sequences, forming a nucleo‐protein complex which is subsequently recruited for transport by a plasmid‐encoded type IV secretion system. In previous work we identified the targeting translocation signals presented by the conjugative relaxase TraI of plasmid R1. Here we report the structure of TraI translocation signal TSA. In contrast to known translocation signals we show that TSA is an independent folding unit and thus forms a bona fide structural domain. This domain can be further divided into three subdomains with striking structural homology with helicase subdomains of the SF1B family. We also show that TSA is part of a larger vestigial helicase domain which has lost its helicase activity but not its single‐stranded DNA binding capability. Finally, we further delineate the binding site responsible for translocation activity of TSA by targeting single residues for mutations. Overall, this study provides the first evidence that translocation signals can be part of larger structural scaffolds, overlapping with translocation‐independent activities.  相似文献   
97.
Resting cells of the methanogen strain HU, a formate-utilizing methanogenic bacterium, was able to utilize formate or hydrogen as electron donor for the production of NADPH from NADP+ under suitable conditions. In the presence of 0.2% Triton X-100 and 0.3 m potassium phosphate, pH 9.0 at 30°C, the resting cells could convert ca. 60% of the exogenous NADP+ into NADPH yielding ca. 6 g NADPH/liter. Phosphate ions greatly enhanced the NADPH production.  相似文献   
98.
The trend of closely related taxa to retain similar environmental preferences mediated by inherited traits suggests that several patterns observed at the community scale originate from longer evolutionary processes. While the effects of phylogenetic relatedness have been previously studied within a single genus or family, lineage‐specific effects on the ecological processes governing community assembly have rarely been studied for entire communities or flora. Here, we measured how community phylogenetic structure varies across a wide elevation gradient for plant lineages represented by 35 families, using a co‐occurrence index and net relatedness index (NRI). We propose a framework that analyses each lineage separately and reveals the trend of ecological assembly at tree nodes. We found prevailing phylogenetic clustering for more ancient nodes and overdispersion in more recent tree nodes. Closely related species may thus rapidly evolve new environmental tolerances to radiate into distinct communities, while older lineages likely retain inherent environmental tolerances to occupy communities in similar environments, either through efficient dispersal mechanisms or the exclusion of older lineages with more divergent environmental tolerances. Our study illustrates the importance of disentangling the patterns of community assembly among lineages to better interpret the ecological role of traits. It also sheds light on studies reporting absence of phylogenetic signal, and opens new perspectives on the analysis of niche and trait conservatism across lineages.  相似文献   
99.
Salmonella, a ubiquitous Gram-negative intracellular bacterium, is a food borne pathogen that infects a broad range of hosts. Infection with Salmonella Typhimurium in mice is a broadly recognized experimental model resembling typhoid fever in humans. Using a N-ethyl-N-nitrosurea (ENU) mutagenesis recessive screen, we report the identification of Ity16 (Immunity to Typhimurium locus 16), a locus responsible for increased susceptibility to infection. The position of Ity16 was refined on chromosome 8 and a nonsense mutation was identified in the ankyrin 1 (Ank1) gene. ANK1 plays an important role in the formation and stabilization of the red cell cytoskeleton. The Ank1Ity16/Ity16 mutation causes severe hemolytic anemia in uninfected mice resulting in splenomegaly, hyperbilirubinemia, jaundice, extramedullary erythropoiesis and iron overload in liver and kidneys. Ank1Ity16/Ity16 mutant mice demonstrated low levels of hepcidin (Hamp) expression and significant increases in the expression of the growth differentiation factor 15 (Gdf15), erythropoietin (Epo) and heme oxygenase 1 (Hmox1) exacerbating extramedullary erythropoiesis, tissue iron deposition and splenomegaly. As the infection progresses in Ank1Ity16/Ity16, the anemia worsens and bacterial load were high in liver and kidneys compared to wild type mice. Heterozygous Ank1+/Ity16 mice were also more susceptible to Salmonella infection although to a lesser extent than Ank1Ity16/Ity16 and they did not inherently present anemia and splenomegaly. During infection, iron accumulated in the kidneys of Ank1+/Ity16 mice where bacterial loads were high compared to littermate controls. The critical role of HAMP in the host response to Salmonella infection was validated by showing increased susceptibility to infection in Hamp-deficient mice and significant survival benefits in Ank1 +/Ity16 heterozygous mice treated with HAMP peptide. This study illustrates that the regulation of Hamp and iron balance are crucial in the host response to Salmonella infection in Ank1 mutants.  相似文献   
100.
The M22.8 monoclonal antibody (mAb) developed against an antigen expressed at the mussel larval and postlarval stages of Mytilus galloprovincialis was studied on adult samples. Antigenic characterization by Western blot showed that the antigen MSP22.8 has a restricted distribution that includes mantle edge tissue, extrapallial fluid, extrapallial fluid hemocytes, and the shell organic matrix of adult samples. Other tissues such as central mantle, gonadal tissue, digestive gland, labial palps, foot, and byssal retractor muscle did not express the antigen. Immunohistochemistry assays identified MSP22.8 in cells located in the outer fold epithelium of the mantle edge up to the pallial line. Flow cytometry analysis showed that hemocytes from the extrapallial fluid also contain the antigen intracellularly. Furthermore, hemocytes from hemolymph have the ability to internalize the antigen when exposed to a cell-free extrapallial fluid solution. Our findings indicate that hemocytes could play an important role in the biomineralization process and, as a consequence, they have been included in a model of shell formation. This is the first report concerning a protein secreted by the mantle edge into the extrapallial space and how it becomes part of the shell matrix framework in M. galloprovincialis mussels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号