首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87403篇
  免费   5000篇
  国内免费   10篇
  92413篇
  2023年   489篇
  2021年   1070篇
  2020年   932篇
  2019年   933篇
  2018年   2362篇
  2017年   2069篇
  2016年   2813篇
  2015年   3756篇
  2014年   3914篇
  2013年   5142篇
  2012年   6023篇
  2011年   5356篇
  2010年   3464篇
  2009年   2640篇
  2008年   4287篇
  2007年   4028篇
  2006年   3993篇
  2005年   3321篇
  2004年   3360篇
  2003年   2973篇
  2002年   2752篇
  2001年   2070篇
  2000年   1929篇
  1999年   1497篇
  1998年   689篇
  1997年   488篇
  1996年   545篇
  1995年   479篇
  1992年   932篇
  1991年   851篇
  1990年   839篇
  1989年   903篇
  1988年   745篇
  1987年   757篇
  1986年   691篇
  1985年   766篇
  1984年   631篇
  1983年   549篇
  1979年   672篇
  1978年   490篇
  1977年   492篇
  1975年   584篇
  1974年   626篇
  1973年   596篇
  1972年   548篇
  1971年   491篇
  1970年   537篇
  1969年   611篇
  1968年   573篇
  1967年   481篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Despite important recent progress in our understanding of brain evolution, controversy remains regarding the evolutionary forces that have driven its enormous diversification in size. Here, we report that in passerine birds, migratory species tend to have brains that are substantially smaller (relative to body size) than those of resident species, confirming and generalizing previous studies. Phylogenetic reconstructions based on Bayesian Markov chain methods suggest an evolutionary scenario in which some large brained tropical passerines that invaded more seasonal regions evolved migratory behavior and migration itself selected for smaller brain size. Selection for smaller brains in migratory birds may arise from the energetic and developmental costs associated with a highly mobile life cycle, a possibility that is supported by a path analysis. Nevertheless, an important fraction (over 68%) of the correlation between brain mass and migratory distance comes from a direct effect of migration on brain size, perhaps reflecting costs associated with cognitive functions that have become less necessary in migratory species. Overall, our results highlight the importance of retrospective analyses in identifying selective pressures that have shaped brain evolution, and indicate that when it comes to the brain, larger is not always better.  相似文献   
993.

Background

Streptococcus dysgalactiae subspecies equisimilis (SDSE) is an emerging global pathogen that can colonize and infect humans. Although most SDSE isolates possess the Lancefield group G carbohydrate, a significant minority have the group C carbohydrate. Isolates are further sub-typed on the basis of differences within the emm gene. To gain a better understanding of their molecular epidemiology and evolutionary relationships, multilocus sequence typing (MLST) analysis was performed on SDSE isolates collected from Australia, Europe and North America.

Methodology/Principal Findings

The 178 SDSE isolates, representing 37 emm types, segregate into 80 distinct sequence types (STs) that form 17 clonal complexes (CCs). Eight STs recovered from all three continents account for >50% of the isolates. Thus, a small number of STs are highly prevalent and have a wide geographic distribution. Both ST and CC strongly correlate with group carbohydrate. In contrast, eleven STs were associated with >1 emm type, suggestive of recombinational replacements involving the emm gene; furthermore, 35% of the emm types are associated with genetically distant STs. Data also reveal a history of extensive inter- and intra-species recombination involving the housekeeping genes used for MLST. Sequence analysis of single locus variants identified through goeBURST indicates that genetic change mediated by recombination occurred ∼4.4 times more frequently than by point mutation.

Conclusions/Significance

A few genetic lineages with an intercontinental distribution dominate among SDSE causing infections in humans. The distinction between group C and G isolates reflects recent evolution, and no long-term genetic isolation between them was found. Lateral gene transfer and recombination involving housekeeping genes and the emm gene are important mechanisms driving genetic variability in the SDSE population.  相似文献   
994.
Schwanniomyces occidentalis β-fructofuranosidase (Ffase) releases β-fructose from the nonreducing ends of β-fructans and synthesizes 6-kestose and 1-kestose, both considered prebiotic fructooligosaccharides. Analyzing the amino acid sequence of this protein revealed that it includes a serine instead of a leucine at position 196, caused by a nonuniversal decoding of the unique mRNA leucine codon CUG. Substitution of leucine for Ser196 dramatically lowers the apparent catalytic efficiency (kcat/Km) of the enzyme (approximately 1,000-fold), but surprisingly, its transferase activity is enhanced by almost 3-fold, as is the enzymes'' specificity for 6-kestose synthesis. The influence of 6 Ffase residues on enzyme activity was analyzed on both the Leu196/Ser196 backgrounds (Trp47, Asn49, Asn52, Ser111, Lys181, and Pro232). Only N52S and P232V mutations improved the transferase activity of the wild-type enzyme (about 1.6-fold). Modeling the transfructosylation products into the active site, in combination with an analysis of the kinetics and transfructosylation reactions, defined a new region responsible for the transferase specificity of the enzyme.β-Fructofuranosidases (EC 3.2.1.26) are enzymes of biotechnological interest that catalyze the release of β-fructose from the nonreducing termini of various β-d-fructofuranoside substrates. In general, they exhibit a high degree of sequence homology, and based on their amino acid sequences, they fall into family 32 of the glycosyl-hydrolases (GH), along with invertases, inulinases, and fructosyltransferases (http://www.cazy.org). The GH32 family has been studied intensely, and some three-dimensional structures are now available, such as that of inulinase from Aspergillus awamorii (26), fructan-exohydrolase from Cichorium intybus (CiFEH) (34, 36), or invertase from Thermotoga maritima (2, 3) and Arabidopsis thaliana (35). These proteins contain a five-blade β-propeller N-terminal catalytic module and a C-terminal β-sandwich domain (19). Multiple-sequence alignment of GH32 proteins, which are included in the GH-J clan together with the GH68 proteins of the inulosucrase family, reveals the presence of three conserved motifs, each containing a key acidic residue (in boldface) implicated in substrate binding and hydrolysis: Asn-Asp-Pro-Asn-Gly (NDPNG), Arg-Asp-Pro (RDP), and Glu-Cys (EC) (28). These conserved residues are implicated in a double-displacement reaction in which a covalent glycosyl-enzyme intermediate is formed. Thus, the catalytic mechanism proposed for the Saccharomyces cerevisiae invertase implies that Asp23 (NDPNG) acts as a nucleophile and Glu204 (EC) acts as the acid/base catalyst (29), whereas Asp309 (RDP) of Acetobacter diazotropicus levansucrase influences the efficiency of sucrose hydrolysis (7) and Arg188 and Asp189 of the latter motif define the substrate binding and specificity of exoinulinase from A. awamorii toward fructopyranosyl residues (26).As well as hydrolyzing sucrose, β-fructofuranosidases may also catalyze the synthesis of short-chain fructooligosaccharides (FOS), in which one to three fructosyl moieties are linked to the sucrose skeleton by different glycosidic bonds, depending on the source of the enzyme (12, 21, 31). FOS act as prebiotics, and they exert a beneficial effect on human health, participating in the prevention of cardiovascular diseases, colon cancer, and osteoporosis (16). Currently, FOS are mainly produced by Aspergillus fructosyltransferase in industry (10, 31), providing a mixture of FOS with an inulin-type structure that contains β-(2→1)-linked fructose oligomers (1F-FOS: 1-kestose or nystose). Curiously, when the link between two fructose units (6F-FOS: 6-kestose) or between fructose and the glucosyl moiety (6G-FOS: neokestose) involves a β-(2→6) link, the prebiotic properties of the FOS may be enhanced beyond that of commercial FOS (23).The yeast Schwanniomyces occidentalis (also called Debaryomyces occidentalis) produces a number of extracellular enzymes that make it of interest in biotechnology. Several of its amylolytic enzymes have been characterized, including amylases and glucoamylase (1, 9), as well as an invertase (17). In addition, we also characterized an extracellular β-fructofuranosidase (Ffase) from this yeast that hydrolyzes sucrose, 1-kestose, and nystose (5). This enzyme exhibited a transfructosylating activity that efficiently produces the trisaccharides 6-kestose and 1-kestose in the ratio 3:1, generating the highest 6-kestose yield yet reported, as far as we know. The Ffase three-dimensional structure has recently been solved (6) and represented as a homodimer, each modular subunit arranged like other GH32 enzymes. The Asp50 (NDPNG) and Glu230 (EC) located at the center of the propeller are the catalytic residues implicated in substrate binding and hydrolysis, whereas Arg178 and Asp179 form the RDP motif (6).The genetic codes of some yeasts incorporate certain variations. For example, while CUG was believed to be a universal codon for leucine, in the cytoplasm of certain species of the genus Candida (15) it encodes a serine, as in Pichia farinosa (33). The reassignment of this codon is mediated by a novel serine-tRNA that acquired a leucine 5′-CAG-3′ anticodon (25).Here, we show that deviation from the standard use of the CUG leucine codon to encode serine was correlated with the transferase capacity and specificity of the Ffase enzyme. Indeed, the S196L substitution enhanced the transferase activity of the enzyme 3-fold. Several site-directed mutants were generated and characterized to study their transferase capacities. These results are considered on the basis of the enzymes'' three-dimensional structure, which enables a novel putative binding site of sucrose that serves as a water substitute donor in the hydrolytic reaction yielding the tranglycosylation product 6-kestose to be identified.  相似文献   
995.
996.

Background

Six independent studies have identified linkage to chromosome 18 for developmental dyslexia or general reading ability. Until now, no candidate genes have been identified to explain this linkage. Here, we set out to identify the gene(s) conferring susceptibility by a two stage strategy of linkage and association analysis.

Methodology/Principal Findings

Linkage analysis: 264 UK families and 155 US families each containing at least one child diagnosed with dyslexia were genotyped with a dense set of microsatellite markers on chromosome 18. Association analysis: Using a discovery sample of 187 UK families, nearly 3000 SNPs were genotyped across the chromosome 18 dyslexia susceptibility candidate region. Following association analysis, the top ranking SNPs were then genotyped in the remaining samples. The linkage analysis revealed a broad signal that spans approximately 40 Mb from 18p11.2 to 18q12.2. Following the association analysis and subsequent replication attempts, we observed consistent association with the same SNPs in three genes; melanocortin 5 receptor (MC5R), dymeclin (DYM) and neural precursor cell expressed, developmentally down-regulated 4-like (NEDD4L).

Conclusions

Along with already published biological evidence, MC5R, DYM and NEDD4L make attractive candidates for dyslexia susceptibility genes. However, further replication and functional studies are still required.  相似文献   
997.
998.
AimTo report the long-term results of high-dose-rate (HDR) brachytherapy (BT) boost for breast cancer patients treated with conservative surgery and radiotherapy.Materials and methodsBetween 1995 and 2007, 100 early-stage breast cancer patients received an HDR BT boost after conservative surgery and whole breast irradiation. Ten patients (10%) received a single-fraction HDR boost of 8–10.35 Gy using rigid needles, while 90 (90%) were treated with a fractionated multi-catheter HDR BT boost. The latter consisted of 3 × 4 Gy (n = 19), 3 × 4.75 Gy (n = 70), and 2 × 6.4 Gy (n = 1). Breast cancer related events, cosmetic results and side effects were assessed.ResultsAt a median follow-up time of 94 months (range: 8–152) only 7 (7%) ipsilateral breast failures were observed for a 5- and 8-year actuarial rate of 4.5 and 7.0%, respectively. The 8-year disease-free, cancer-specific, and overall survival was 76.1, 82.8, and 80.4%, respectively. Cosmetic outcome was rated excellent in 17%, good in 39%, fair in 33%, and poor in 11%. Data on late radiation side effects were available for 91 patients (91%). Grade 3 fibrosis and grade 3 telangiectasia occurred in 6 (6.6%) and 2 (2.2%) patients, respectively. In univariate analysis only positive margin status had a significant negative effect on local control.ConclusionsHDR BT boost using multi-catheter implants produce excellent long-term local tumour control with acceptable cosmetic outcome and low rate of grade 3 late radiation side effects.  相似文献   
999.
Optimization of bead analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) after the screening of one-bead-one-peptide combinatorial libraries was achieved, involving the fine-tuning of the whole process. Guanidine was replaced by acetonitrile (MeCN)/acetic acid (AcOH)/water (H2O), improving matrix crystallization. Peptide-bead cleavage with NH4OH was cheaper and safer than, yet as efficient as, NH3/tetrahydrofuran (THF). Peptide elution in microtubes instead of placing the beads in the sample plate yielded more sample aliquots. Successive dry layers deposit sample preparation was better than the dried droplet method. Among the matrices analyzed, α-cyano-4-hydroxycinnamic acid resulted in the best peptide ion yield. Cluster formation was minimized by the addition of additives to the matrix.  相似文献   
1000.
Subunit arrangement in beef heart complex III   总被引:6,自引:0,他引:6  
Beef heart mitochondrial complex III was separated into 12 polypeptide bands representing 11 different subunits by using the electrophoresis conditions described by Sch?gger et al. [(1986) Methods Enzymol. 126, 224-237]. Eight of the 12 polypeptide bands were identified from their NH2-terminal sequences as obtained by electroblotting directly from the NaDodSO4-polyacrylamide gel onto a solid support. The topology of the subunits in complex III was explored by three different approaches. (1) Protease digestion experiments of submitochrondrial particles in the presence and absence of detergent showed that subunits II and VI are on the M side of the inner membrane and subunits V and XI on the C side. (2) Labeling experiments with the membrane-intercalated probes [125I]TID and arylazidoPE indicated that cytochrome b is the predominant bilayer embedded subunit of complex III, while the non-heme iron protein appears to be peripherally located. (3) Cross-linking studies with carbodiimides and homobifunctional cleavable reagents demonstrated that near-neighbor pairs include subunits I+II, II+VI, III+VI, IV+V, V+X, and reagents demonstrated that near-neighbor pairs include subunits I+II, II+VI, III+VI, IV+V, V+X, and VI+VII. The cytochrome c binding site was found to include subunits IV, VIII, and X. The combined data are used to provide an updated model for the topology of beef heart complex III.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号