首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1209篇
  免费   187篇
  2021年   8篇
  2016年   11篇
  2015年   26篇
  2014年   33篇
  2013年   41篇
  2012年   45篇
  2011年   55篇
  2010年   50篇
  2009年   32篇
  2008年   37篇
  2007年   57篇
  2006年   55篇
  2005年   49篇
  2004年   70篇
  2003年   55篇
  2002年   49篇
  2001年   43篇
  2000年   52篇
  1999年   41篇
  1998年   16篇
  1997年   12篇
  1996年   13篇
  1995年   8篇
  1994年   10篇
  1993年   13篇
  1992年   21篇
  1991年   25篇
  1990年   26篇
  1989年   27篇
  1988年   24篇
  1987年   23篇
  1986年   27篇
  1985年   30篇
  1984年   20篇
  1983年   19篇
  1982年   16篇
  1981年   11篇
  1980年   15篇
  1979年   20篇
  1978年   19篇
  1977年   20篇
  1976年   14篇
  1975年   15篇
  1974年   16篇
  1973年   12篇
  1972年   23篇
  1971年   11篇
  1970年   7篇
  1969年   19篇
  1967年   14篇
排序方式: 共有1396条查询结果,搜索用时 15 毫秒
991.
Insects rely primarily on innate immune responses to fight pathogens. In Drosophila, antimicrobial peptides are key contributors to host defense. Antimicrobial peptide gene expression is regulated by the IMD and Toll pathways. Bacterial peptidoglycans trigger these pathways, through recognition by peptidoglycan recognition proteins (PGRPs). DAP-type peptidoglycan triggers the IMD pathway via PGRP-LC and PGRP-LE, while lysine-type peptidoglycan is an agonist for the Toll pathway through PGRP-SA and PGRP-SD. Recent work has shown that the intensity and duration of the immune responses initiating with these receptors is tightly regulated at multiple levels, by a series of negative regulators. Through two-hybrid screening with PGRP-LC, we identified Rudra, a new regulator of the IMD pathway, and demonstrate that it is a critical feedback inhibitor of peptidoglycan receptor signaling. Following stimulation of the IMD pathway, rudra expression was rapidly induced. In cells, RNAi targeting of rudra caused a marked up-regulation of antimicrobial peptide gene expression. rudra mutant flies also hyper-activated antimicrobial peptide genes and were more resistant to infection with the insect pathogen Erwinia carotovora carotovora. Molecularly, Rudra was found to bind and interfere with both PGRP-LC and PGRP-LE, disrupting their signaling complex. These results show that Rudra is a critical component in a negative feedback loop, whereby immune-induced gene expression rapidly produces a potent inhibitor that binds and inhibits pattern recognition receptors.  相似文献   
992.

Background  

Leishmania and other intracellular pathogens have evolved strategies that support invasion and persistence within host target cells. In some cases the underlying mechanisms involve the export of virulence factors into the host cell cytosol. Previous work from our laboratory identified one such candidate leishmania effector, namely elongation factor-1α, to be present in conditioned medium of infectious leishmania as well as within macrophage cytosol after infection. To investigate secretion of potential effectors more broadly, we used quantitative mass spectrometry to analyze the protein content of conditioned medium collected from cultures of stationary-phase promastigotes of Leishmania donovani, an agent of visceral leishmaniasis.  相似文献   
993.

Background

Murine Leukemia Virus (MLV) is a rodent gammaretrovirus that serves as the backbone for common gene delivery tools designed for experimental and therapeutic applications. Recently, an infectious gammaretrovirus designated XMRV has been identified in prostate cancer patients. The similarity between the MLV and XMRV genomes suggests a possibility that the two viruses may interact when present in the same cell.

Methodology/Principal Findings

We tested the ability of XMRV to complement replication-deficient MLV vectors upon co-infection of cultured human cells. We observed that XMRV can facilitate the spread of these vectors from infected to uninfected cells. This functional complementation occurred without any gross rearrangements in the vector structure, and the co-infected cells produced as many as 104 infectious vector particles per milliliter of culture medium.

Conclusions/Significance

The possibility of encountering a helper virus when delivering MLV-based vectors to human cells in vitro and in vivo needs to be considered to ensure the safety of such procedures.  相似文献   
994.
A shift toward Th2 cytokine production has been demonstrated during pregnancy and high dose estrogen therapy and is thought to be the primary mechanism by which estrogen suppresses the development of experimental autoimmune encephalomyelitis. However, low dose estrogen treatment is equally protective in the absence of a significant shift in cytokine production. In this study cytokine-deficient mice were treated with estrogen to determine whether a shift in Th2 cytokine production was required for the protective effects of hormone therapy. Estrogen effectively suppressed the development of experimental autoimmune encephalomyelitis in IL-4 and IL-10 knockout mice and in wild type littermate mice with a similar potency of protection. Significant disease suppression was also seen in IFN-gamma-deficient mice. The decrease in disease severity was accompanied by a concomitant reduction in the number of proinflammatory cytokine- and chemokine-producing cells in the CNS. Although there was no apparent increase in compensatory Th2 cytokine production in cytokine-deficient mice, there was a profound decrease in the frequency of TNF-alpha-producing cells in the CNS and the periphery. Therefore, we propose that one mechanism by which estrogen protects females from the development of cell-mediated autoimmunity is through a hormone-dependent regulation of TNF-alpha production.  相似文献   
995.
In vivo glycosylation of mucin tandem repeats.   总被引:4,自引:0,他引:4  
The biochemical and biophysical properties of mucins are largely determined by extensive O-glycosylation of serine- and threonine-rich tandem repeat (TR) domains. In a number of human diseases aberrant O-glycosylation is associated with variations in the properties of the cell surface-associated and secreted mucins. To evaluate in vivo the O-glycosylation of mucin TR domains, we generated recombinant chimeric mucins with TR sequences from MUC2, MUC4, MUC5AC, or MUC5B, which were substituted for the native TRs of epitope-tagged MUC1 protein (MUC1F). These hybrid mucins were extensively O-glycosylated and showed the expected association with the cell surface and release into culture media. The presence of different TR domains within the chimeric mucins appears to have limited influence on their posttranslational processing. Alterations in glycosylation were detailed by fast atom bombardment mass spectrometry and reactivity with antibodies against particular blood-group and tumor-associated carbohydrate antigens. Future applications of these chimeras will include investigations of mucin posttranslational modification in the context of disease.  相似文献   
996.
Conformationally restricted arginine analogues (1-5) were synthesized and found to be alternative substrates or inhibitors of the three isozymes of nitric oxide synthase (NOS). A comparison of k(cat)/Km values shows that (E)-3,4-didehydro-D,L-arginine (1) is a much better substrate than the corresponding (Z)-isomer (2) and 3-guanidino-D,L-phenylglycine (3), although none is as good a substrate as is arginine; 5-keto-D,L-arginine (4) is not a substrate, but is an inhibitor of the three isozymes. Therefore, it appears that arginine binds to all of the NOS isozymes in an extended (E-like) conformation. None of the compounds exhibits time-dependent inhibition of NOS, but they are competitive reversible inhibitors. Based on the earlier report that N(omega)-propyl-L-arginine is a highly selective nNOS inhibitor (Zhang, H. Q.; Fast, W.; Marletta, M.; Martasek, P.; Silverman, R. B. J. Med. Chem. 1997, 40, 3869), (E)-N(omega)-propyl-3,4-didehydro-D,L-arginine (5) was synthesized, but it was shown to be weakly potent and only a mildly selective inhibitor of NOS. Imposing conformational rigidity on an arginine backbone does not appear to be a favorable approach for selective NOS inhibition.  相似文献   
997.
Drosophila peptidoglycan recognition protein (PGRP)-LCx and -LCa are receptors that preferentially recognize meso-diaminopimelic acid (DAP)-type peptidoglycan (PGN) present in Gram-negative bacteria over lysine-type PGN of gram-positive bacteria and initiate the IMD signaling pathway, whereas PGRP-LE plays a synergistic role in this process of innate immune defense. How these receptors can distinguish the two types of PGN remains unclear. Here the structure of the PGRP domain of Drosophila PGRP-LE in complex with tracheal cytotoxin (TCT), the monomeric DAP-type PGN, reveals a buried ionic interaction between the unique carboxyl group of DAP and a previously unrecognized arginine residue. This arginine is conserved in the known DAP-type PGN-interacting PGRPs and contributes significantly to the affinity of the protein for the ligand. Unexpectedly, TCT induces infinite head-to-tail dimerization of PGRP-LE, in which the disaccharide moiety, but not the peptide stem, of TCT is positioned at the dimer interface. A sequence comparison suggests that TCT induces heterodimerization of the ectodomains of PGRP-LCx and -LCa in a closely analogous manner to prime the IMD signaling pathway, except that the heterodimer formation is nonperpetuating.  相似文献   
998.
The NS1 protein of influenza A/WSN/33 virus is a 230-amino-acid-long protein which functions as an interferon alpha/beta (IFN-alpha/beta) antagonist by preventing the synthesis of IFN during viral infection. In tissue culture, the IFN inhibitory function of the NS1 protein has been mapped to the RNA binding domain, the first 73 amino acids. Nevertheless, influenza viruses expressing carboxy-terminally truncated NS1 proteins are attenuated in mice. Dimerization of the NS1 protein has previously been shown to be essential for its RNA binding activity. We have explored the ability of heterologous dimerization domains to functionally substitute in vivo for the carboxy-terminal domains of the NS1 protein. Recombinant influenza viruses were generated that expressed truncated NS1 proteins of 126 amino acids, fused to 28 or 24 amino acids derived from the dimerization domains of either the Saccharomyces cerevisiae PUT3 or the Drosophila melanogaster Ncd (DmNcd) proteins. These viruses regained virulence and lethality in mice. Moreover, a recombinant influenza virus expressing only the first 73 amino acids of the NS1 protein was able to replicate in mice lacking three IFN-regulated antiviral enzymes, PKR, RNaseL, and Mx, but not in wild-type (Mx-deficient) mice, suggesting that the attenuation was mainly due to an inability to inhibit the IFN system. Remarkably, a virus with an NS1 truncated at amino acid 73 but fused to the dimerization domain of DmNcd replicated and was also highly pathogenic in wild-type mice. These results suggest that the main biological function of the carboxy-terminal region of the NS1 protein of influenza A virus is the enhancement of its IFN antagonist properties by stabilizing the NS1 dimeric structure.  相似文献   
999.
1000.
Studies of catalytically active DNA sequences have expanded considerably since the first artificial deoxyribozyme was identified in 1994. Nevertheless, the field is still quite young, and advances in both fundamental understanding and practical applications of deoxyribozymes are still developing. Deoxyribozymes that either cleave or ligate two RNA substrates have been most widely investigated, and this review describes recent advances in the fundamental studies and applications of these DNA enzymes. Deoxyribozymes with catalytic activities other than RNA ligation and cleavage are also increasingly pursued, and this review covers several key examples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号