首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1127篇
  免费   206篇
  国内免费   1篇
  2018年   10篇
  2016年   11篇
  2015年   18篇
  2014年   33篇
  2013年   32篇
  2012年   43篇
  2011年   51篇
  2010年   28篇
  2009年   20篇
  2008年   34篇
  2007年   32篇
  2006年   41篇
  2005年   42篇
  2004年   40篇
  2003年   40篇
  2002年   28篇
  2001年   35篇
  2000年   39篇
  1999年   29篇
  1998年   25篇
  1997年   17篇
  1996年   21篇
  1995年   12篇
  1994年   11篇
  1993年   23篇
  1992年   30篇
  1991年   32篇
  1990年   28篇
  1989年   33篇
  1988年   26篇
  1987年   25篇
  1986年   30篇
  1985年   35篇
  1984年   34篇
  1983年   23篇
  1982年   27篇
  1981年   21篇
  1980年   17篇
  1979年   42篇
  1978年   16篇
  1977年   18篇
  1976年   15篇
  1975年   20篇
  1974年   15篇
  1973年   13篇
  1972年   16篇
  1970年   9篇
  1969年   11篇
  1968年   10篇
  1967年   7篇
排序方式: 共有1334条查询结果,搜索用时 31 毫秒
171.
Better understanding of tolerance and autoimmunity toward melanocyte-specific Ags is needed to develop effective treatment for vitiligo and malignant melanoma; yet, a systematic assessment of these mechanisms has been hampered by the difficulty in tracking autoreactive T cells. To address this issue, we have generated transgenic mice that express hen egg lysozyme as a melanocyte-specific neoantigen. By crossing these animals to a hen egg lysozyme-specific CD4 TCR transgenic line we have been able to track autoreactive CD4+ T cells from their development in the thymus to their involvement in spontaneous autoimmune disease with striking similarity to human vitiligo vulgaris and Vogt-Koyanagi-Harada syndrome. Our findings show that CD4-dependent destruction of melanocytes is partially inhibited by blocking Fas-Fas ligand interactions and also highlights the importance of local control of autoimmunity, as vitiligo remains patchy and never proceeds to confluence even when Ag and autoreactive CD4+ T cells are abundant. Immune therapy to enhance or suppress melanocyte-specific T cells can be directed at a series of semiredundant pathways involving tolerance and cell death.  相似文献   
172.
The affinity of iron oxides and hydroxides for phosphorus is thought to contribute to phosphorus limitation to net primary productivity in humid tropical forests on acidic, highly weathered soils. Perennially warm, humid conditions and high biological activity in these soils can result in fluctuating redox potential that in turn leads to considerable iron reduction in the presence of labile carbon and humic substances. We investigated the effects of reducing conditions in combination with the addition of labile carbon substrates (glucose and acetate) and an electron shuttle compound on iron reduction and phosphorus release in a humid tropical forest soil. Glucose or acetate was added to soils as a single dose at the beginning of the experiment, and as pulsed inputs over time, which more closely mimics patterns in labile carbon availability. Iron reduction and phosphorus mobilization were weakly stimulated by a single low level addition of carbon, and the addition of the electron shuttle compound with or without added carbon. Pulsed labile carbon additions produced a significant increase in soil pH, soluble iron, and phosphorus concentrations. Pulsed labile carbon inputs also promoted the precipitation of ferrous hydroxide complexes which could increase the capacity for P sorption, although our results suggest that rates of P solubilization exceeded re-adsorption. Plant and microbial P demand are also likely to serve as an important sinks for released P, limiting the role of P re-adsorption. Our results suggest that reducing conditions coupled with periodic carbon inputs can stimulate iron reduction and a corresponding increase in soil phosphorus mobilization, which may provide a source of phosphorus to plants and microorganisms previously undocumented in these ecosystems.  相似文献   
173.
Fluctuating soil redox regimes may facilitate the co-occurrence of microbial nitrogen transformations with significantly different sensitivities to soil oxygen availability. In an upland humid tropical forest, we explored the impact of fluctuating redox regimes on gross nitrogen cycling rates and microbial community composition. Our results suggest that the rapidly fluctuating redox conditions that characterize these upland soils allow anoxic and oxic N processing to co-occur. Gross nitrogen mineralization was insensitive to soil redox fluctuations. In contrast, nitrifiers in this soil were directly affected by low redox periods, yet retained some activity even after 3–6 weeks of anoxia. Dissimilatory nitrate reduction to ammonium (DNRA) was less sensitive to oxygen exposure than expected, indicating that the organisms mediating this reductive process were also tolerant of unfavorable (oxic) conditions. Denitrification was a stronger sink for NO3 in consistently anoxic soils than in variable redox soils. Microbial biomass and community composition were maintained with redox fluctuation, but biomass decreased and composition changed under static oxic and anoxic soil regimes. Bacterial community structure was significantly correlated with rates of nitrification, denitrification and DNRA, suggesting that redox-control of soil microbial community structure was an important determinant of soil N-cycling rates. Specific nitrogen cycling functional groups in this environment (such as nitrifiers, DNRA organisms, and denitrifiers) appear to have adapted to nutrient resources that are spatially and temporally variable. In soils where oxygen is frequently depleted and re-supplied, characteristics of microbial tolerance and resilience can frame N cycling patterns.  相似文献   
174.
Compared to other species, little information is available on the xenobiotic-induced regulation of cytochrome P450 enzymes in the beagle dog. Dogs are widely used in the pharmaceutical industry for many study types, including those that will impact decisions on compound progression. The purpose of this study was (1) to determine the temporal kinetics of drug-induced changes in canine CYP1A, CYP2B, and CYP3A mRNA and enzymatic activity, and (2) to characterize concentration-response relationships for CYP1A2, CYP2B11, and CYP3A12 using primary cultures of canine hepatocytes treated with beta-naphthoflavone (BNF), phenobarbital (PB), and rifampin (RIF), respectively. CYP1A1 and CYP1A2 mRNA exhibited maximal expression (12,700-fold and 206-fold, respectively) after 36 h of treatment with BNF. PB treatment, but not RIF treatment, caused maximal induction of CYP2B11 mRNA (149-fold) after 48 h of treatment. CYP3A12 and CYP3A26 mRNA levels were increased maximally after 72 h of treatment with PB and RIF (CYP3A12, 35-fold and 18-fold, and CYP3A26, 72-fold and 22-fold with PB and RIF treatment, respectively). Concentration-response relationships for BNF induced 7-ethoxyresorufin O-dealkylation (EROD) (EC(50) = 7.8 +/- 4.2 microM), PB induced 7-benzyloxyresorufin O-dealkylation (BROD) (EC(50) = 123 +/- 30 microM), and PB and RIF induced testosterone 6beta-hydroxylation (EC(50) = 132 +/- 28 microM and 0.98 +/- 0.16 microM) resembled the relationship for human CYP induction compared to that of rodent. Interestingly, RIF had no effect on CYP2B11 expression, which represents a species difference overlooked in previous investigations. Overall, the induction of dog CYP1A, CYP2B, and CYP3A exhibits characteristics that are intermediate to those of rodent and human.  相似文献   
175.
176.
177.
The mechanism by which cells decide to skip mitosis to become polyploid is largely undefined. Here we used a high-content image-based screen to identify small-molecule probes that induce polyploidization of megakaryocytic leukemia cells and serve as perturbagens to help understand this process. Our?study implicates five networks of kinases that?regulate the switch to polyploidy. Moreover, we find that dimethylfasudil (diMF, H-1152P) selectively increased polyploidization, mature cell-surface marker expression, and apoptosis of malignant megakaryocytes. An integrated target identification approach employing proteomic and shRNA screening revealed that a major target of diMF is Aurora kinase A (AURKA). We further find that MLN8237 (Alisertib), a selective inhibitor of AURKA, induced polyploidization and expression of mature megakaryocyte markers in acute megakaryocytic leukemia (AMKL) blasts and displayed potent anti-AMKL activity in?vivo. Our findings provide a rationale to support clinical trials of MLN8237 and other inducers of polyploidization and differentiation in AMKL.  相似文献   
178.
The bioindustrial production of fuels, chemicals, and therapeutics typically relies upon carbohydrate inputs derived from agricultural plants, resulting in the entanglement of food and chemical commodity markets. We demonstrate the efficient production of sucrose from a cyanobacterial species, Synechococcus elongatus, heterologously expressing a symporter of protons and sucrose (cscB). cscB-expressing cyanobacteria export sucrose irreversibly to concentrations of >10 mM without culture toxicity. Moreover, sucrose-exporting cyanobacteria exhibit increased biomass production rates relative to wild-type strains, accompanied by enhanced photosystem II activity, carbon fixation, and chlorophyll content. The genetic modification of sucrose biosynthesis pathways to minimize competing glucose- or sucrose-consuming reactions can further improve sucrose production, allowing the export of sucrose at rates of up to 36.1 mg liter(-1) h illumination(-1). This rate of production exceeds that of previous reports of targeted, photobiological production from microbes. Engineered S. elongatus produces sucrose in sufficient quantities (up to ~80% of total biomass) such that it may be a viable alternative to sugar synthesis from terrestrial plants, including sugarcane.  相似文献   
179.
Agrobacterium albertimagni strain AOL15 is an alphaproteobacterium isolated from arsenite-oxidizing biofilms whose draft genome contains 5.1 Mb in 55 contigs with 61.2% GC content and includes a 21-gene arsenic gene island. This is the first available genome for this species and the second Agrobacterium arsenic gene island.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号