首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1127篇
  免费   206篇
  国内免费   1篇
  2018年   10篇
  2016年   11篇
  2015年   18篇
  2014年   33篇
  2013年   32篇
  2012年   43篇
  2011年   51篇
  2010年   28篇
  2009年   20篇
  2008年   34篇
  2007年   32篇
  2006年   41篇
  2005年   42篇
  2004年   40篇
  2003年   40篇
  2002年   28篇
  2001年   35篇
  2000年   39篇
  1999年   29篇
  1998年   25篇
  1997年   17篇
  1996年   21篇
  1995年   12篇
  1994年   11篇
  1993年   23篇
  1992年   30篇
  1991年   32篇
  1990年   28篇
  1989年   33篇
  1988年   26篇
  1987年   25篇
  1986年   30篇
  1985年   35篇
  1984年   34篇
  1983年   23篇
  1982年   27篇
  1981年   21篇
  1980年   17篇
  1979年   42篇
  1978年   16篇
  1977年   18篇
  1976年   15篇
  1975年   20篇
  1974年   15篇
  1973年   13篇
  1972年   16篇
  1970年   9篇
  1969年   11篇
  1968年   10篇
  1967年   7篇
排序方式: 共有1334条查询结果,搜索用时 15 毫秒
151.
Cerebellar LTD and pattern recognition by Purkinje cells   总被引:2,自引:0,他引:2  
Many theories of cerebellar function assume that long-term depression (LTD) of parallel fiber (PF) synapses enables Purkinje cells to learn to recognize PF activity patterns. We have studied the LTD-based recognition of PF patterns in a biophysically realistic Purkinje-cell model. With simple-spike firing as observed in vivo, the presentation of a pattern resulted in a burst of spikes followed by a pause. Surprisingly, the best criterion to distinguish learned patterns was the duration of this pause. Moreover, our simulations predicted that learned patterns elicited shorter pauses, thus increasing Purkinje-cell output. We tested this prediction in Purkinje-cell recordings both in vitro and in vivo. In vitro, we found a shortening of pauses when decreasing the number of active PFs or after inducing LTD. In vivo, we observed longer pauses in LTD-deficient mice. Our results suggest a novel form of neural coding in the cerebellar cortex.  相似文献   
152.
153.
154.
Lignin mineralization represents a critical flux in the terrestrial carbon (C) cycle, yet little is known about mechanisms and environmental factors controlling lignin breakdown in mineral soils. Hypoxia is thought to suppress lignin decomposition, yet potential effects of oxygen (O2) variability in surface soils have not been explored. Here, we tested the impact of redox fluctuations on lignin breakdown in humid tropical forest soils during ten‐week laboratory incubations. We used synthetic lignins labeled with 13C in either of two positions (aromatic methoxyl or propyl side chain Cβ) to provide highly sensitive and specific measures of lignin mineralization seldom employed in soils. Four‐day redox fluctuations increased the percent contribution of methoxyl C to soil respiration relative to static aerobic conditions, and cumulative methoxyl‐C mineralization was statistically equivalent under static aerobic and fluctuating redox conditions despite lower soil respiration in the latter treatment. Contributions of the less labile lignin Cβ to soil respiration were equivalent in the static aerobic and fluctuating redox treatments during periods of O2 exposure, and tended to decline during periods of O2 limitation, resulting in lower cumulative Cβ mineralization in the fluctuating treatment relative to the static aerobic treatment. However, cumulative mineralization of both the Cβ‐ and methoxyl‐labeled lignins nearly doubled in the fluctuating treatment relative to the static aerobic treatment when total lignin mineralization was normalized to total O2 exposure. Oxygen fluctuations are thought to be suboptimal for canonical lignin‐degrading microorganisms. However, O2 fluctuations drove substantial Fe reduction and oxidation, and reactive oxygen species generated during abiotic Fe oxidation might explain the elevated contribution of lignin to C mineralization. Iron redox cycling provides a potential mechanism for lignin depletion in soil organic matter. Couplings between soil moisture, redox fluctuations, and lignin breakdown provide a potential link between climate variability and the biochemical composition of soil organic matter.  相似文献   
155.
Malaria infection is a significant risk factor for low birth weight outcomes in pregnancy. Despite efforts to define the molecular mechanisms that cause low birth weight as a result of intrauterine growth restriction, the roles of inflammation and mononuclear cells in the process are incompletely understood. Data from adverse pregnancy outcomes in humans and from murine models of pathological pregnancies suggest that C5a could be an important upstream regulator of placental angiogenesis, and excessive C5a could lead to functional placental insufficiency by impairing adequate vascularization of the placenta. Based on recent evidence, we hypothesize that complement factor C5a is a central initiator of poor birth outcomes associated with placental malaria by promoting mononuclear cell migration, activation and dysregulated angiogenesis.  相似文献   
156.
Placental infections with Plasmodium falciparum are associated with fetal growth restriction resulting in low birth weight (LBW). The mechanisms that mediate these effects have yet to be completely described; however, they are likely to involve inflammatory processes and dysregulation of angiogenesis. Soluble endoglin (sEng), a soluble receptor of transforming growth factor (TGF)-β previously associated with preeclampsia in pregnant women and with severe malaria in children, regulates the immune system and influences angiogenesis. We hypothesized that sEng may play a role in development of LBW associated with placental malaria (PM). Plasma levels of sEng were measured in women (i) followed prospectively throughout pregnancy in Cameroon (n = 52), and (ii) in a case-control study at delivery in Malawi (n = 479). The relationships between sEng levels and gravidity, peripheral and placental parasitemia, gestational age, and adverse outcomes of PM including maternal anemia and LBW were determined. In the longitudinal cohort from Cameroon, 28 of 52 women (54%) experienced at least one malaria infection during pregnancy. In Malawi we enrolled two aparasitemic gravidity-matched controls for every case with PM. sEng levels varied over the course of gestation and were significantly higher in early and late gestation as compared to delivery (P<0.006 and P<0.0001, respectively). Circulating sEng levels were higher in primigravidae than multigravidae from both Cameroon and Malawi, irrespective of malarial infection status (p<0.046 and p<0.001, respectively). Peripheral parasitemia in Cameroonian women and PM in Malawian women were each associated with elevated sEng levels following correction for gestational age and gravidity (p = 0.006 and p = 0.033, respectively). Increased sEng was also associated with the delivery of LBW infants in primigravid Malawian women (p = 0.017); the association was with fetal growth restriction (p = 0.003) but not pre-term delivery (p = 0.286). Increased circulating maternal sEng levels are associated with P. falciparum infection in pregnancy and with fetal growth restriction in primigravidae with PM.  相似文献   
157.
158.
159.
Ufd1 mediates ubiquitin fusion degradation by association with Npl4 and Cdc48/p97. The Ufd1-ubiquitin interaction is essential for transfer of substrates to the proteasome. However, the mechanism and specificity of ubiquitin recognition by Ufd1 are poorly understood due to the lack of detailed structural information. Here, we present the solution structure of yeast Ufd1 N domain and show that it has two distinct binding sites for mono- and polyubiquitin. The structure exhibits striking similarities to the Cdc48/p97 N domain. It contains the double-psi beta barrel motif, which is thus identified as a ubiquitin binding domain. Significantly, Ufd1 shows higher affinity toward polyubiquitin than monoubiquitin, attributable to the utilization of separate binding sites with different affinities. Further studies revealed that the Ufd1-ubiquitin interaction involves hydrophobic contacts similar to those in well-characterized ubiquitin binding proteins. Our results provide a structural basis for a previously proposed synergistic binding of polyubiquitin by Cdc48/p97 and Ufd1.  相似文献   
160.
Myosin II is an intracellular force-generating enzyme with no known extracellular action. In the course of experiments involving trituration loading of skeletal myosin II into embryonic sensory neurons we observed that extracellular application of myosin II to neurons resulted in a robust increase in the number of axons initiated by each neuron, but did not alter the rate of axon extension. Substratum bound myosin II in the presence of laminin was sufficient to elicit increases in axon formation. However, in the absence of laminin, extracellular myosin II alone was not sufficient to promote axon formation, although it allowed neuron survival in the presence of neurotrophin. Myosin II promoted the attachment of neurons to the substratum in the absence or presence of laminin. In addition to promoting the initiation of axons, extracellular myosin II also increased the frequency of axon collateral branching. Finally, extracellular myosin II did not affect growth cone collapse in response to semaphorin-IIIA, but attenuated the inhibitory action of chondroitin sulfate proteoglycans on axon extension. Surprisingly, these results demonstrate that extracellular myosin II promotes attachment of neurons and increases axon formation and branching. The potential significance of these observations is discussed in the context of myosin II release from injured muscle and a previous demonstration of extracellular myosin II association with the extracellular matrix.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号